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Suppose that the density of stationary unbounded viscous fluid is a sinusoidal
function of the vertical position coordinate z. Is this body of fluid gravitationally
unstable to small disturbances, and, if so, under what conditions, and to what type
of disturbance ? These questions are considered herein, and the answers are that the
fluid is indeed unstable, for any non-zero value of the amplitude of the sine wave, to
disturbances with large horizontal wavelength. These disturbances have approxi-
mately vertical velocity everywhere and tilt the alternate layers of heavier and
of lighter fluid, causing the fluid in the former to slide down and that in the latter to
slide up, leading to a sinusoidal variation of the vertically averaged density and
thereby to reinforcement of the vertical motion. The identification of this novel and
efficient global instability mechanism prompts a consideration of the stability of
sther cases of unbounded fluid stratified in layers. Two other types of undisturbed
density distribution, the first an isolated central layer of heavier or lighter fluid, with
density varying say as a Gaussian function, and the second an isolated layer of fluid
in which the density varies as the derivative of a Gaussian function, are found to be
unstable, at all values of the magnitude of the density variation, to disturbances
having the same global character. For the first of these two types of density
distribution, the behaviour of a disturbance with long horizontal wavelength
depends only on the net excess mass of unit area of the central layer, and for the
second it depends only on the first moment of the density in the central layer. For
the second type there arises another global instability mechanism in which light fluid
is stripped away from one side of the layer and heavy fluid from the other without
any tilting. In all cases the properties of a neutral disturbance are determined
numerically, and the growth rate is found as a function of the Rayleigh number, the
Prandtl number, and the horizontal wavenumber of the disturbance. An energy
argument gives results easily for the inviscid non-diffusive limit, when all
disturbances grow, and reveals the tilting-sliding mechanism of the instability of a
disturbance with large horizontal wavelength in its simplest form.

1. Introduction

Most of the known results concerning the gravitational stability of stationary
stratified fluid refer to fluid confined between two horizontal plane boundaries. In
this paper we consider the stability of stationary fluid which by contrast extends to
infinity in the vertical direction with a specified continuous distribution of density.
For simplicity here we shall suppose the fluid to be completely unbounded, but the
distinguishing feature of the cases considered is that there are no horizontal
boundaries present. The absence of horizontal boundaries allows vertical disturbance

t Now at Department of Chemical Engineering, State University of New York at Buffalo,
Buffalo, NY 14260, USA.



358 Q. K. Batchelor and J. M. Nitsche

velocities of the same sign over large ranges of values of the vertical coordinate z, and
we shall see that this is a common property of the disturbances to which the fluid is
most unstable. There are some novel features of the instability of stratified fluid in
the absence of horizontal boundaries, and we have thought it worthwhile to take a
general point of view and to study the stability properties of classes of vertical
density distribution. Throughout the paper we consider only small disturbances
governed by linear equations. ,

The particular question that drew our attention to problems of stability of
stratified flow without horizontal boundaries arises in the theory of sedimentation
waves in dispersions of small particles (Batchelor 1991). It is known from the work
of Kynch (1952) that, when the concentration of particles varies so slowly with
respect to z that the local mean fall speed of particles is approximately the same
function of local concentration as in a statistically homogeneous dispersion, a
sinusoidal variation of concentration with small amplitude propagates vertically (as
a kinematic wave) without change of form. Jackson (1963) subsequently showed that
inclusion of the effect of particle inertia in the equations governing such a wave leads
to growth of the wave amplitude. There are other effects, not considered by Jackson
in this early work, which are stabilizing, but later studies (Batchelor 1988) have
established that the destabilizing effect of particle inertia is dominant under certain
conditions which are realizable physically. Thus the amplitude of a sinusoidal
sedimentation wave with horizontal wave front may grow exponentially with time
in a fluidized bed. There arises then the question : since the mean density distribution
in a sedimentation wave is statically unstable in every alternate half-wavelength, is
there a secondary overturning instability which sets in when the wave amplitude
exceeds a certain value ? Inasmuch as a dispersion of small particles in fluid with non-
uniform concentration behaves dynamically like a continuum with non-uniform
density when the speed of fall of a particle relative to the fluid locally is sufficiently
small, we may expect to be able to give a partial answer to this question from results
for the instability of a continuum with a sinusoidal density distribution. To go
further and to allow for the effect of the relative motion of the fluid and the particles
would take us into considerations of two-phase flow theory which do not have a
natural place in this paper, so we shall not pursue this potential application of the
stability theory here. The purpose in mentioning it is to indicate the original
motivation for our work.

It will be supposed herein that the fluid is viscous and that the conserved quantity
affecting the fluid density (e.g. heat, mass of solute, number of suspended particles)
diffuses through the fluid. We shall wish for convenience to be able to make the
conventional assumption of hydrodynamic stability theory that the undisturbed
state is steady, and we are aware that the only vertical distribution of density with
which this is exactly compatible in the absence of sources of buoyancy is one with
uniform density gradient. Even so, we shall suppose that some other density
distributions may exist in the undisturbed state. In some cases one can give an
a priori justification for supposing that the specified density distribution in the
undisturbed fluid is approximately steady. For example, Matthews (1988) invoked
the effect of solar heating of the surface layers of a lake to justify the steadiness of
his assumed cubic density profile; and the sedimentation waves mentioned above are
known to have steady amplitude under certain conditions. In other cases the
justification may be @ posteriori inasmuch as one finds that the disturbance has
growth timescales small compared with the time for significant change of the density
profile by diffusion or has lengthscales large compared with the distance over which
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appreciable diffusion occurs. There are various possibilities, and they are best
considered in a specific context after the results for the assumed steady density
distributions are available.

After setting out the usual equations governing a small disturbance of a stratified
fluid (§2), we determine the rate of growth of a disturbance of arbitrary form when
the undisturbed vertical density gradient is uniform and positive (§3). We then begin
the discussion of undisturbed density gradients which are non-uniform, taking first
the case studied by Gribov & Gurevich (1957) and Matthews (1988) in which the
density gradient is negative everywhere except within a layer of finite thickness (§4).
The absence of horizontal boundaries is not of major significance here, because the
static stability of the fluid outside the layer prevents up or down currents of large
vertical extent in any event. It is crucial however in the case in which the fluid
density is a sinusoidal function of z in the undisturbed state (§5). Up or down
currents of large vertical extent also play an important role when the density is
uniform outside a central layer with the same values on the two sides and there are
various types of density distribution within the layer (§6). The main contribution of
this paper is the discovery that in all these new cases there are global types of
disturbance with large horizontal wavelength which are not associated closely with
local regions of static instability and which grow exponentially however small the
magnitude of the variation of density in the undisturbed state. An energy argument
which is applicable to fluid with zero viscosity and density diffusivity reveals one of
the global instability mechanisms clearly (§7). Both at low and at high Reynolds
numbers of the disturbance motion the precise form of the density distribution
within the layers has only a secondary influence on the stability properties.

2. Equations governing a small disturbance to stationary stratified fluid

The fluid density and pressure in the undisturbed stationary state will be written
as

Potp1(2), po—gf(pﬁpl)dz,

where p, and p, are representative values. The vertical coordinate z is positive
upwards. In the disturbed state the fluid velocity is u, with components u, v, w, and
the density and pressure are

p=potprtp, P= po—gf(po+p1)dz+p’-
The equation of motion for the fluid, assumed to have uniform viscosity u, is then
ou , , .
P 5+u-Vu =p'g—Vp +uVu. (2.1)

If now we assume |p, + p’| <€ p, and make the Boussinesq approximation that density
variations are significant only through their influence on the gravitational force, the
density p multiplying the fluid acceleration in (2.1) may be replaced by p, and the
mass-conservation relation reduces to

V-u=0. (2.2)
The linearized form of (2.1) is then

au ! !
Pogy =PE—VP +uViu. (2.3)
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The variation of fluid density is normally a consequence of non-uniformity of the
intensity of some conserved physical quantity such as heat or mass of solute or
number of small suspended particles. This conserved quantity is convected with the
fluid and may also be diffused relative to the fluid. If we assume that the diffusivity
D is uniform, the conservation equation for the intensity C (standing for temperature
or concentration) in incompressible fluid in the absence of external sources is

%—fw-vc = DV?C. (2.4)

The relation between p and C is linear for small variations in p and may be written
as

p—po = BC—=Cy), (2.5)

where £ is a constant dependent on the physical meaning of C. Equation (2.4) then
becomes
9(py +p)

—a T Ve t+p) =DVip, +p'). (2.6)

This is the point at which we make the assumptions (i) that equation (2.6) is
satisfied in the undisturbed state when the fluid is stationary, whence

81 _ 0Py
o =D 02 (2.7)
and (ii) that the undisturbed state is steady, whence 0p,/0t = 0. These two
assumptions are exactly compatible only if 0p,/0z is uniform. As explained in the
introduction we shall ignore the inconsistency involved in the adoption of nonlinear
density profiles and leave for later ad hoc consideration the question whether in a
particular case there is a distributed source of buoyancy in the fluid, represented by
an additional term on the right-hand side of (2.7) which is equal and opposite to
D%, /022, or whether both terms in (2.7) are of small magnitude in some appropriate
sense, or whether the consequences of these magnitudes not being small are
immaterial for certain purposes. The linearized form of (2.6), after use of (2.7), is then

9 . dpy o,
P +w p = DV3p'. (2.8)

Equations (2.2), (2.3) and (2.8) govern the behaviour of a small disturbance to an
undisturbed state in which the fluid is stationary and the density p, depends on z
alone. The dependent variables u, v, p’, p” may be eliminated from these equations,
giving

(Q—DW) (9— uv2) vew =991z, (2.9)
ot ot Py dz
as the equation for the vertical velocity component w, where v = p/p, and Vi denotes
the Laplacian operator in the horizontal plane.

We shall assume the existence of normal modes of disturbance, and suppose all
disturbance quantities associated with one mode to be proportional to exp (¥¢). In the
absence of bulk rotation and externally imposed magnetic fields and other effects
causing oscillatory behaviour of an overturning disturbance, it seems clear on
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physical grounds that y must be real for a neutral or growing disturbance; and a
formal proof for the case of fluid with uniform density gradient in a vertical tube has
been given by Yih (1959). We shall take it for granted that a neutral disturbance is
characterized by y = 0, and so is steady, for all the different forms of the function
p.(2) considered here.

In the absence of vertical boundaries Fourier components of the disturbance with
respect to a horizontal coordinate x are independent. Hence for a normal mode we
may write

w= W()ercosax, p’,p’ oce’cosax, uocesinax, (2.10)

so that (2.9) becomes

e 2_d_2 Y 2_d_2 2_d_2 — go %
(D+a dz2)<v+a az2/\* T az w Dvp, dz w. (2.11)

We resist the temptation to make the variables dimensionless at this stage, because
the choice of the required representative length depends on the particular
undisturbed density distribution. Definition of the Rayleigh number as a governing
parameter likewise must wait.

Solutions of (2.11) will now be considered for different functional forms of dp, /dz.

3. A uniform undisturbed density gradient

This is the classical case on which previous work on instability of stationary
stratified fluid has concentrated. However it seems not to have been noticed in the
literature that there is a simple explicit solution for the stability exponent y in the
case in which there are no boundaries and the fluid extends to infinity in all
directions.

All coefficients in the disturbance equation (2.11) are constant here, so Fourier
components of W with respect to z are independent. We thus lose no generality by
writing

W,p oc coskz, u,p’ oCsinkz (3.1)

and substituting in (2.11) to obtain
(Z+a2+K"’)(Z+a2+K?) (2 +«?) = _Qi% (3.2)
D v Dvp, dz
One root of this quadratic equation for vy is
y = k¥ +a?) [{D—v)*+4DvS}:— (D +v)], (3.3)
showing that the disturbance grows exponentially (y real and positive) if
2

@ g do
(k¥ +a?)® Dvp, dz > 1. (34)

We see that for given a the smallest positive value of dp,/dz for which a
disturbance grows occurs at x =0, corresponding to a disturbance mode with
straight vertical streamlines for which the nonlinear terms in the full governing
equations are identically zero. This is the first appearance of the common result that,
in the absence of horizontal boundaries, up and down currents extending over large
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vertical distances provide a very efficient way of releasing the potential energy of
the undisturbed state. The value of the smallest undisturbed density gradient for a
neutral disturbance with horizontal wavenumber « is thus

4
i(%) =< DV_ (3.5)
pO dz =0, k=0 g

This simple case provides a standard with which ecritical gradients for other
undisturbed states may be compared.

4. Fluid with a statically stable density distribution except in a central
layer

There have been several studies of the instability of stationary fluid with a non-
uniform density gradient in the context of what in geophysics is referred to as
‘penetrative convection’. This arises in systems where a fluid layer with positive
vertical density gradient adjoins at least one semi-infinite region of fluid with
negative density gradient. Roll motions driven by the unstable central layer are
generally found to extend well into the stable regions, hence the name. Two of these
studies which have some relevance to the present work, by Matthews (1988) and by
Gribov & Gurevich (1957), will be described briefly here.

Matthews (1988) considered the case of unbounded fluid in which the undisturbed
density, regarded as a steady distribution maintained by a solar volumetric heat
source, takes the form of a cubic polynomial in z:

4]

The appropriate Rayleigh number here is R = g4d®/Dv. The density gradient dp,/dz
is positive for 2| < d/+/3, and the density p,+ p, takes the base value p, at z = 0 and
z==d (figure 1a). Matthews solved the eigenvalue problem (2.11) with y =0 by
taking the Fourier transform with respect to z, which leads to a second-order
differential equation with variable coefficients for the transform W(w) in consequence
of the quadratic dependence of the density gradient on z. The value of R is
determined by Runge-Kutta shooting from @ = 0 subject to the requirement that
W = 0 at some large value of w, as a numerical implementation of the condition that
W(w)—0 as @~ co. The Rayleigh number for a neutral disturbance depends on the
wavenumber a and is found to have a minimum value of 88.0 at ad = 1.26 (in the case
of the first mode for which W is an even function of z — the minimum value of R for
the first odd mode is several times as large). Numerical inversion of W leads to
streamlines exhibiting a surprisingly large central roll in the interval |2| < 1.69d,
extending well beyond the confines of the statically unstable layer, and symmetrical
sequences of rolls of rapidly diminishing flow strength above and below. On physical
grounds some penetration is expected, since a fluid element with the local maximum
density at z = d/+/3 experiences a downward gravitational force until it reaches fluid
of the same density at z = —2d/+/3.

With regard to both the primary roll structure and the feature of a minimum value
of R at a non-zero horizontal wavenumber, the cubic density stratification is identical
in its qualitative features with other systems (e.g. the Bénard flow cell) where
horizontal planar boundaries or other constraints prevent upflow and downflow
currents from extending to infinity. The negative density gradients in the semi-
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Ficure 1. Fluid with a statically stable density distribution except in a central layer. (@) The cubic
dependence on z considered by Matthews (1988); (b) the piecewise-linear dependence on 2z
considered by Gribov & Gurevich (1957).

infinite regions outside the central layers here effectively confine disturbance flow to
a region whose vertical extent is of the same order of magnitude as the thickness of
the statically unstable layer.

Quantitative information related to this observation is provided by Matthews’
additional consideration of the influence of constant-density free or rigid boundaries
at z = +.%. For free boundaries he expands W in the cosine series

W= io: W, cos[n(k—1)2/Z ], (4.2)

k=1

which satisfies the pertinent boundary conditions. The coefficients W, are governed
by an infinite homogeneous system of linear equations, which yields a matrix
eigenvalue problem. Matthews obtained numerical approximations for E by
truncating the linear system at various orders, the largest being 4 x 4, and finding the
smallest value of R for which the determinant vanishes. Among other conclusions,
the calculations demonstrate that the minimum Rayleigh number for a neutral
disturbance for .£/d = 3 is already close to the corresponding value for the original
unbounded system, the intervening statically stable layers having effectively
damped out the flow before it can reach the boundaries. Calculations for rigid
boundaries yield the same qualitative conclusion.

Previous analyses of penetrative instabilities have often addressed continuous,
piecewise-linear density distributions which necessarily possess corners, requiring
delta-function sources and sinks of buoyancy in the fluid (figure 15). There exists an
early analysis of this type by Gribov & Gurevich (1957) which bears some relation to
the developments described in §§5, 6. Among other calculations, these authors
considered the limiting case in which the non-dimensional density gradients in the
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semi-infinite statically stable regions above and below the central layer (C,; and C, in
their notation), now considered to be parameters independent of the gradient in the
central statically unstable layer, are equal and tend to zero. As expected, for fixed
C, the Rayleigh number (based on properties of the central layer of thickness 4) for
a neutral disturbance exhibits a minimum R, at a certain value of the horizontal
wavenumber a . The results have the intriguing feature that, in the limit as C, -0,
(i) both R, and a,, tend to zero, and (ii) the depth of penetration of the corresponding
convective rolls (their 2*) is inversely proportional to a, and therefore increases
without bound. The latter statement indicates that the vertical extent of the
disturbance flow is no longer limited, in order of magnitude, to the thickness of the
central layer. The precise scaling dependences, extracted from their equations (45)
and (46), are as follows:

R, ~ 34(ha,)® and h* ~2.4/a,, where ha, ~ 0.60C}. (4.3)

Gribov & Gurevich give little indication of the form of the disturbance flow, and their
analysis is so complex mathematically that the physical significance of these
asymptotic relations is concealed.

Neutral disturbances for which R and a are both small constitute a central feature
of our new work. In the next two sections we present an analysis of ‘global’
disturbances that uncovers the driving physical mechanism and illuminates its key
asymptotic features.

5. A sinusoidal undisturbed density distribution

This is the case that initially motivated our study of instability of stratified fluid
in the absence of horizontal boundaries. As explained in the introduction, a
sinusoidal vertical distribution of particle concentration may arise spontaneously in
a fluidized bed under certain conditions, and it is of interest to know whether and
when this sinusoidal distribution with growing amplitude becomes unstable to
overturning disturbances. Provided the relative velocity of particles and the
surrounding fluid is small, it seems likely that this overturning instability may be
investigated on the assumption that the mixture of particles and fluid behaves as a
new continuous fluid with the same mean density. Whether that assumption is valid,
and the consequences for the stability properties if it is not, are matters for future
investigation from two-phase flow theory. Here we consider only the overturning
instability of a continuous fluid and leave aside the possible application to fluidized
beds.

The undisturbed density will be written as

Potp1 = poll +4sinkz)

in which the constant 4 is positive. A suitable definition of the Rayleigh number is
then
_ o4
"~ Dvk®

(5.1)

As before we suppose that the fluid is unbounded in all directions. The general form
of the disturbance is given by (2.10), and the governing differential equation (2.11)

becomes
Y . d? Y2 d? . d? — 24 9
(D—-l—a dz2)(v+a Ep a = W= a*k*RcoskzW. (5.2)
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The standard eigenvalue methods for equations with constant coeflicients are not
applicable, but we can exploit the expectation that there are solutions for which W
is a periodic function of z with period 2n/k and use solution techniques like those
applicable to Mathieu’s equation. We write

2] «©
W(z) = 3, F,sinnkz+ Y, G, cosnkz, (5.3)
n=1 n=0
then substitute in (5.2), convert all terms in (5.2) to Fourier series, and equate
coefficients. The odd and even functions of z in (5.3) are not coupled, and so we may
consider them separately, taking the odd sine series first. Note that, as the origin of
2z has been chosen, p, is an odd function of z.

5.1. Disturbance modes with W odd in z
The odd part of equation (5.2) is

> L, F,sinnkz = 1a?k*R 3 F,{sin (n—1)kz+sin (n+1) kz},
n=1 n=1
Y Y

where L,= (5+a2 +n2/<2) (;+a2+n2kz) (e +nk?), (5.4)

and equating coeflicients of sin n«z gives
L,F, =**R(F,_+F,,,) (n=1,2,..), (5.5)

in which F, = 0. We note that L, increases rapidly with n, which suggests that F,
decreases rapidly and that an approximate solution of this three-term recurrence
relation may be obtained by truncating the Fourier series for W(z).
In the extreme case in which we put F, = 0 for » > 2, (5.5) reduces to the two
equations
L, F, = la®k*RF,, L,F, =3a*"RF,, (5.6)

and the existence of a non-zero solution for F; and F, requires
1g2k'R = (L, L,)*. (5.7)
If instead we put F, =0 for » >3, we find that the right-hand side of (5.7) is

1

multiplied by the factor L3/(L, + L)t which is not very different from unity. The
next approximation, obtained by putting F, = 0 for n > 4, gives

(Qo?k?R) — (Ly Ly + Ly Ly + Ly L) Go?,*R)2 + L, Ly Ly L, = 0, (5.8)

of which there are now two roots for R. Since L, L, is small compared with L,L,, the
two roots are approximately

kR = (L1L2)%, kiR = (L3L4)%: (5.9)

which repeats the earlier estimate of the smaller root. Truncation at larger values of
n similarly confirms estimates of the smaller roots and adds new larger roots.

Setting F,, = 0 for » larger than some small integer, as above, has the advantage
of giving simple explicit approximate formulae. Our numerical results, however, are
all obtained from truncations after » = 10 and machine calculations by standard
methods, and can be considered to be ‘exact’. As it turns out, the approximate
formulae are very accurate quantitatively.
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FioUure 2. Rayleigh number as a function of the horizontal wavenumber a for either odd or even
modes of a neutral disturbance to stationary fluid with density varying sinusoidally with respect
to z.

Each solution of the characteristic equation represents a relation between the

dimensionless quantities

vooa
Ry L > Ty
(Dvyx* D’ «

For a neutral disturbance (y = 0), the dependence on v/D disappears and (5.9)
reduces to

R=

2 LT PR 243 2 233 2 2\3

(K +oc1) (24/: +oc)’ R=(9K +a1) (21(45K +oc)‘ (5.10)
AK 3K

Figure 2 shows R as a function of a/k for the first of these two odd modes of
disturbance. The minimum value of R for this mode is 62.9 and occurs at
a/k = 0.963, these values being given accurately by the first member of (5.10).
The minimum values of R for higher-order odd modes are much larger.

Calculation of the first few Fourier coefficients (F,) shows that the neutral first odd
mode of disturbance with minimum R is an approximately square-sectioned roll
cell with nested closed streamlines between the boundaries «z = pn, (p+1)7 and
0.963xx = gn, {(g+1)m where p and ¢ are integers, as shown in figure 3(a). Note
that the streamlines are not exactly symmetrical about the centre of a ecll. The
vertical component of fluid velocity is larger in magnitude at a value of z at which
dp,/dz > 0 than it is at the corresponding position where dp,/dz is negative with
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Ficure 3. Streamlines of neutral disturbances at the minimum of R with respect to a. (a) The first
odd mode; (b) the second even mode. The increments in the stream function between two adjoining
continuous curves are equal. The dotted curves in (b) are arbitrarily chosen intermediate
streamlines.

the same magnitude. This and other numerical details are consistent with the
interpretation of the roll cells as being driven by the overturning of the statically
unstable fluid in every alternate half-wavelength.

We saw in §3 that, when dp,/dz is constant, the value of dp,/dz at which a neutral
disturbance sinusoidal with respect to both x and z can exist in unbounded fluid is
given by

g dp, _ (K*+a?)®
k*Dvp, dz ~  K'a

(5.11)

whereas when dp,/dz o cos kz a neutral odd-mode disturbance of lowest order exists
at

2 2330 4,2 23
g (dpl) _ (k% +a?)i(4x? +a?) . (5.12)
Zz=0

- K*Dyp, \ dz Licto®
The minimum value of the expression (5.11) for fixed « occurs at a/x = 0.71 and is
6.8, whereas that of (5.12) occurs at a/k = 0.96 and is 63, the latter critical density

gradient being larger because in the case of the sinusoidal density profile some parts
of the fluid have no tendeney to overturn in a square cell.

5.2. Disturbance modes with W even in z

When the series of cosine terms in (5.3) is substituted for W(z) in (5.2) we get

> L,G,cosnkz = k'R Y, G, {cos (n—1) kz+cos (n+1) kz}, (5.13)

n=0 n=0
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where L, is as defined in (5.4). Equating coefficients of cosnkz gives
L,G, =1*c*RG,, LG, =1**R(2G,+4,)
00 2 1 11 2 0 2 ‘[ (514)
and L,G,=1RG,_,+0G,,,) n=2,3,...). J

On truncating the Fourier series at various small values of # in the same way we find
for the first and second even modes of lowest order

102k*R = (AL, L,)}, LR = (L,L,): (5.15)

respectively. The corresponding relations between R and a/« for a neutral
disturbance are then

_ vza(izmz)%’ ' (4K2+a2)%(91<2+a2)%’ (5.16)

1.2,.4
2’k

R

and the exact values are shown graphically in figure 2. The minimum value of R for
the second even mode occurs at a/« = 1.70 and is 510, which is considerably larger
than the minimum value of R for the first odd mode of disturbance. This second even
mode also has a cellular form, as shown in figure 3(b).

The first even neutral mode, however, has the surprising property of not possessing
a non-zero minimum of R. The first of the relations (5.16) has the asymptotic form
R ~ +/2a/« (indicated by the broken line in figure 2) as a/« — 0. It appears that,
however small the Rayleigh number may be, a neutral even mode of disturbance can
be found by choosing a sufficiently small horizontal wavenumber. The first of the
relations (5.15) shows that the rate of growth of the first even mode of disturbance
at prescribed values of R, a/k and v/D is given approximately by

1.2 8R2
(%+a2)(%+a2)(%+K2+a2)(%+x2+a2)=%2—. (5.17)

For the particular case v/D = 1, this equation can be solved explicitly for y:

y a* 1 1{  2+4/2aR)}
(vD)ik?  K® 2+2{1 (K2+d.2)%} ’ (5.18)
the corresponding exact values being shown graphically in figure 4 (a). The shape of
the curves relating v and a« is qualitatively similar at other values of v/D, as shown
in figure 4 (b). For any R > { there is a range of values of a/x bounded by a/x = 0 for
which v > 0. A sinusoidal density profile is evidently always unstable.

The above theory suggests that if a sinusoidal distribution of density is suddenly
set, up in stationary fluid by some means, the disturbanee that emerges by the
familiar process of differential growth is that for which v is a maximum with respect
to a at the given value of R, and so is characterized by points lying on the broken
curve in figure 4 (a).

5.3. The first even mode : a global type of instability

The result that disturbances of large horizontal wavelength become unstable as soon
as the Rayleigh number is made non-zero is unusual for cases of stationary stratified
fluid, and we shall therefore examine the nature of the disturbance motion to see the
mechanism of the instability.

It may be shown readily that for a neutral disturbance with small horizontal
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the stream function between two adjoining continuous curves are equal. The broken curve in each
diagram is the boundary of the region of closed streamlines. The dotted curve for the case

a/x = 0.2 is an arbitrarily chosen closed streamline.
wavenumber the Fourier coefficients G, given by (5.14) with the first relation in

(6.16) have rapidly diminishing magnitudes; specifically

G, vV 2a3 G (a"")
—=——, —==0|=] (»=2)
GO (K2+a2)§ GO Ksn ( )

Thus the approximations to the horizontal and vertical components of velocity

correct to O(a3/k?) are

2 2 3
w= \/2G0%sin arsinkz, w=4, cosaz(l + \/K:L cos Kz), (5.19)
showing that the velocity vector is nearly vertical everywhere. This is likewise
evident from the streamlines of a neutral disturbance within the region «|2| <,
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Fieure 6. Sketch showing the vertical and horizontal components of velocity in a neutral first even
global-mode disturbance to a sinusoidal density distribution; a/x = 0.1. The velocity distribution
is periodic in z and 2 with periods 2n/e and 27/« respectively.

0 < ax < mshown in figure 5 for the cases a/k = 1,0.5,0.2. We see also that since the
slope of a material surface which is horizontal in the undisturbed state has the sign
of dw/0x, that is, of —sin ax, the sign of the small horizontal component of velocity
corresponds to a motion of a layer of denser fluid (p, > 0) down the slope and a
motion of a layer of less dense fluid up the slope. Figure 6 shows these differential
sliding motions of the tilted layers of fluid schematically for a neutral disturbance
with a/k = 0.1. There is a tendency for heavy fluid to accumulate in the troughs of
the wavy disturbance with a corresponding depletion of light fluid, and vice versa in
the crests of the wave; and in the case of a neutral disturbance this tendency is
balanced by the restoring effect of diffusion and the restraining effect of viscosity.

Now that we have the picture provided by figure 6, it is plausible and natural that
a wavy disturbance of long horizontal wavelength which tilts the layers of stratified
fluid to the horizontal should generate a relative sliding motion due to gravity which
tends to separate the light and heavy fluid into different vertical compartments of
width w/a and so to reinforce the initial disturbance motion. This instability
mechanism is global in character, in contrast to the local type of instability which
generates an overturning motion in roll cells with dimensions comparable with the
vertical thickness of the layer of fluid in which dp,/dx is positive. A homely
illustration of the mechanism is provided by a large shallow tray which is filled with
water to a depth of a centimetre or two. It is difficult to pick up the tray without
spilling the water because the slightest tilt to the horizontal causes the water to flow
to the lowest point of the tray, where the accumulation of water depresses that end
of the tray even more.

It seems likely that, as in the case of Rayleigh—Taylor instability of a horizontal
interface across which there is a density jump, in the nonlinear phase of development
of the growing disturbance there is an approach to a state in which falling heavy fluid
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and rising light fluid occupy adjoining vertical columns or fingers of width /e, the
value of a being that for which the growth rate of a small disturbance is a maximum
at the given value of R. There may not be an asymptotic steady state, however,
because diffusion in the horizontal direction gradually eliminates the density
variations.

It will be recalled that at the beginning of this section we anticipated the existence
of solutions of the governing equation (5.2) for which W(z) is periodic in z with period
2n/k like the undisturbed density distribution. Floquet theory for ordinary
differential equations with periodic coefficients (Ince 1944) suggests the further
possibility of solutions which are periodic in z with period 2nN/k, where N is an
integer and N =1 for the ‘synchronous’ disturbance examined above. We have
examined the first two even-mode ‘subharmonic’ disturbances (for which N = 2, 3)
by the above method, and find that, although they are unstable, the Rayleigh
number for a neutral disturbance does not vanish with a/« and is larger than that
for a synchronous disturbance with the same (small) value of a/«.

However, new cases in which N » 1 prove to be interesting. Since the vertical
period of the disturbance is here large compared with the period 2mn/k, the
disturbance velocity W(z) is likely to be approximately uniform over one period of
the undisturbed density profile, thereby reproducing the conditions for the global
tilting-sliding mechanism sketched in figure 6. We do in fact find by the method used
above that, when ¥ is equal to the large ratio x/a, the Rayleigh number for a neutral
disturbance asymptotes to 4a/« as a/k - 0. The disturbance motion here occupies a
large rectangular cell with both linear dimensions of order 2n/a, and the vertical
component of the disturbance velocity is consequently weak over some parts of the
cell. An even more unstable disturbance is therefore obtained by choosing

N> «k/a> 1, (5.20)

because now the disturbance cell is much larger in the vertical than in the horizontal
direction and the tilting of the layers of heavier and lighter fluid is exactly as found
for the first even synchronous mode when a/«x <€ 1 (see figures 5 and 6). Again we
have confirmed this analytically, and find v/2a/k for the Rayleigh number of a
neutral disturbance satisfying the conditions (5.20). For any large values of N and of
x/a we obtain the expression

2 \3
R= VE“(1+N’:T‘2) (5.21)

for the Rayleigh number of a neutral disturbance.

In summary, all subharmonics, whether even or odd, have a cellular structure
because the first term in the Fourier series representing W(z) is not constant. The
ratio of the vertical to horizontal dimensions of the cell is Na/k, and only when
this ratio is large can the global tilting-sliding mechanism operate effectively. As
Na/k - 0, and provided a/k < 1, the relation between y/(vD)?, R, v/D and a/«,
for both even- and odd-mode subharmonics, tends to that already found for the
first even-mode synchronous disturbance, which remains the most unstable type.

6. Fluid with zero density gradient outside a central layer

The analysis of the preceding section for a sinusoidal undisturbed density variation
led to the identification of a global type of instability characterized by the feature
that the Rayleigh number for neutral stability tends to zero as the horizontal
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Ficure 7. Types of density stratification with zero gradient outside a central layer of
thickness /.

wavelength becomes large. Now that the basic mechanism for the instability has
been explained, it is worthwhile to enquire whether there are other density profiles
for which similar instabilities exist.

The results for a sinusoidal density profile suggest consideration of fluid with non-
uniform density in a single central horizontal layer, since here too heavy or light fluid
would slide laterally when the layer is tilted. Figure 7 shows schematically three
types of undisturbed density stratification which may conveniently be considered
together. These three are (1) a layer of transition from light fluid below to heavy fluid
above, (2, 2') an isolated layer of heavy or light fluid, and (3,3") a heavy and a light
sub-layer one on top of the other. Here, ‘heavy’ and ‘light’ mean relative to the base
density p,. In each of these three cases a layer with thickness of O(l) in which the
density is non-uniform is sandwiched between two semi-infinite expanses of fluid in
which the density gradient tends rapidly to zero. Our three cases differ significantly
from density profiles studied previously within the context of penetrative convection
(§4) inasmuch as the fluid is not statically stable outside the central layer. As a
consequence, we shall again find that the fluid is unstable to disturbances with long
horizontal wavelengths at small values of the Rayleigh number. In case (1), which is
the Rayleigh-Taylor type of instability with effects of buoyancy diffusion included,
the disturbances do not exhibit the novel tangential sliding of fluid layers that we
found for a sinusoidal density profile, but we include consideration of case (1) in view
of its close mathematical connection with cases (2) and (3).

6.1. Asymptotic analysis for al € 1

Our starting point is equation (2.11). Fourier transformation of both sides yields the
following expression for the transform of W(z):

T — _ ga®/(vD) * 1dp, vz
W) = FIWE = sy /D) wr+ @ 1y o) @ ) J_m Po a4z @) dz

(6.1)
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In general, (6.1) leads via the convolution theorem to an integral equation for W(w)
which seems not to be simpler than the original differential equation (2.11). However,
we are interested primarily in the asymptotic behaviour of W when a/ € 1, and an
approximate approach starting directly from (6.1) enables us to identify — without
having to assume any specific functional forms for p, — the key parameters of the
three types of density profile that determine their stability properties. Since the
undisturbed density gradient dp,/dz goes to zero outside the central layer, the value
of the integral in (6.1) is determined approximately by the behaviour of W(z) near
z =0. We therefore form a Taylor expansion of W(z)exp (iwz) about z =0, and
evaluate this integral as

* 1dp, . © M, [d*(Wel¥?)
el*dz = >, 22— .
J po dz et dz nz=:0 n! [ dz" Lo 2
_ (7 aldo
where M, = f_ oy dz dz. (6.3)

The formal expansion procedure is predicated upon the expectation that the vertical
component of velocity varies slowly over the central layer when al < 1, this being
suggested by experience with the sinusoidal case, where the velocity for the global
mode at long horizontal wavelengths varied very little with z despite periodic
variations in dp,/dz.

Equations (6.1) and (6.2) together give rise to functions of w having the form

o = (iw)*
H) = ety /D)W + @+ y/v) (@ )’

Inversion requires use of the following identity, derivable by contour integration
techniques:
" il kak—IVZ
Jil2) = F 7 frlw)] = ( )272 [

v i v 2
wh = - —_
ere g, (1 + 2 ) s (1 + D)

and P is the Prandtl number v/D. (Contrary to appearances the expression (6.4} is
not singular at P =1 nor at y =0.) We note for future use that for a neutral
disturbance (y = 0), (6.4) assumes the limiting form

efaz o.llc-I efonaz o.)2c—1 ef u,az]
z

Pt 1iopr Tre-n| RO

Ky k—5
fiulz) = i[(k— 1)(k—3) F (2k—3) az+ (az)?]e™* (2 2 0). (6.5)
In terms of the functions f, given by (6.4), the inversion of (6.1) leads to
W(z) = {M W(0)fo+M,[W'(0) fo+ W(0)f,]

+IML[W(0) fo+2W (0)f, + WO o] +...5,  (6.6)

where the prime denotes differentiation with respect to z. Equation (6.6) specifies
W(z) in terms of the values of W and its derivatives at z =0, moments of the
undisturbed density gradient dp,/dz, and the known functions f,(z). As is evident
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from (6.4), the f,(2) generally decay exponentially on the spatial scales a™!, (ac,;)™?
and (ao,)~*. Consistency of the asymptotic analysis requires that all these lengths be
much larger than the thickness of the central layer. Thus, in addition to al <€ 1,
further a posterior: conditions for validity of the approximate approach are y < v/I?
and y < D/I?. The latter two inequalities require the timescale of growth to be much
larger than the times for momentum and buoyancy diffusion over a distance equal
to the central layer thickness. It may be deduced from subsequent results that a
sufficient condition for satisfaction of all three inequalities is smallness of the
Rayleigh number based on the layer thickness.

It may be noted in passing that, although we are ignoring possible effects of time
evolution of the base density profile p,+ p, due to diffusion, our asymptotic analysis
indicates that such temporal changes have no effect to leading order at large
horizontal wavelengths. A conserved quantity governed by the diffusion equation
evolves in such a way that the moments M, and M, of the spatial gradient are
constant, and so too is M, when M;=0. The growth rate y is determined
asymptotically by p,+p, only through its dependence upon these moments (in a
manner to be detailed below), all of which are unaffected by diffusive spreading of the
base profile. The only restriction is that the time be not so long that the broadening
central layer ceases to be thin compared with the horizontal wavelength.

Case (1): a transition between two different densities

The zeroth-order moment (see (6.3)) specifies the fractional change in density:
Mo — P |z»oo — P |z—>—oo .

Po
At the lowest order of approximation, equation (6.6) gives for W(z) the expression

ga’M,

W) vD

W(0) fo(2). (6.7)

The validity of this expression for W(z) at z = 0 requires that

go®M, 1
vD fol0)

(6.8)

For the special case of a neutrally stable disturbance (see (6.5)) these expressions
become

_ giM, ~ 16
R= D 3 (al)? (6.9)
and W(z) ~ W(0) e I [1 + |az| + }(«2)?]. (6.10)

The flow field given by (6.10) is illustrated in figure 8(a), and consists of rolls which
decay exponentially with z on the scale a~!. The essentially vertical flow near z = 0
is like that for the sinusoidal case. Likewise the Rayleigh number for neutral stability
tends to zero as al—> 0, although now with the third (not the first) power of al. It is
understandable that the damping effects of viscous stresses and diffusion should be
more important for interleaved layers of heavy and light fluid than for a configuration
where the heavy fluid is separated from the light fluid. We shall see in §7 that the
growth rate vy is proportional to the same power of « in the sinusoidal case and in
case (1) when diffusion and viscous effects are absent.
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Ficure 8. Streamlines for the limiting form of the neutral disturbance as al - 0. (a) Case (1); (b)
case (2); (c) case (3), even mode; (d) case (3), odd mode; (¢) case (3’). The increments in the stream
function between two adjoining continuous curves are equal. The broken curve in (c) is the
boundary of two inner regions of closed streamlines, and the dotted curves are arbitrarily chosen
intermediate streamlines.

Equation (6.6) makes it clear that the asymptotic relations (6.7)-(6.10) derive
purely from the existence of a density difference. Details of the transition from light
to heavy fluid do not enter at lowest order, provided only that the horizontal
wavelength is much larger than the thickness of this central layer. The succeeding
terms in (6.6) represent higher-order corrections to the leading asymptotic behaviour,
and are affected by the specific form of the undisturbed density gradient through
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FioUre 9. Growth rate vy as a function of the horizontal wavenumber a for density variations of
type (1) in the limit as al > 0. In this limit the central layer is characterized solely by the fractional
density difference M,, here equal to 0.1 for all the curves.

their dependence upon its higher moments, as will be demonstrated later. If p, is not
an odd function of z (e.g. when M, % 0), then higher-order corrections will cause small
deviations from the symmetry of the leading-order flow about the central plane
z = 0. It is worth noting that, at lowest order, the density gradient dp,/dz acts as a
Dirac delta function in (6.1), picking out the value of W(z)exp (iwz) at z = 0.
When al < 1 the central layer looks infinitesimally thin on the scale a™! of spatial
variations in the disturbance flow, and case (1) is then a body of heavy fluid lying
above a body of light fluid separated from it by an interface. This situation was
addressed by Taylor (1950) for the case of inviscid flow with surface tension at the
interface, and his work was later extended by others (Bellman & Pennington 1954 ;
see also Chandrasekhar 1961) to include the effects of fluid viscosity with or without
interfacial tension. Our analysis makes a small new contribution to this classical
problem inasmuch as our results show the effect of the diffusion of buoyancy on a
disturbance in the absence of interfacial tension. Figure 9 shows the dependence of
the growth rate y, calculated numerically from (6.8) and (6.4), on the horizontal
wavenumber « for a fixed value of the fractional density difference M, and various
values of v/D. Here we have used the characteristic length (¥2/g)? and the kinematic
viscosity » to make y and a dimensionless, as in Chandrasekhar (1961). The limiting
functional relation as v/D-— oo is numerically identical with that given by
Chandrasekhar for the case where the fluid has viscosity but no surface tension and
no diffusion of buoyancy. The curves corresponding to different values of v/D
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indicate that diffusion of buoyancy inhibits the growth of disturbances and makes
possible a condition of neutral stability. In this respect diffusion has the same
additional effect as surface tension, although the operative physical mechanisms are
quite different. For an interface with surface tension, the neutral disturbance
corresponds to stationary fluid and a deformation of the interface which prevents the
further release of potential energy by fingering of heavy fluid down into light fluid
and vice versa. In our situation the neutrally stable disturbance involves a steady
flow, and the ‘interface’ (central transition layer) remains stationary because the
density now diffuses relative to the fluid and fluid may pass through the ‘interface’
without carrying it along.

All the curves in figure 9 have the asymptotic behaviour y* ~ igaM as a becomes
small. This is the relation derived by Taylor (1950) for the inviscid (and non-
diffusive) case.

Case (2): a layer of either heavy or light fluid

Here the values of the undisturbed density far above and below the central layer

are identical, whence the first term on the right-hand side of (6.6) vanishes. The value
of

M, =| 2,
—0 Po

representing the excess mass per unit area of the layer divided by p,, now determines
at leading order whether the stratified fluid is dynamically stable. Equation (6.6)
specifies W(z) in terms of the values of W and W’ at z = 0, and leads to two linear
equations in the variables W(0) and W’(0) which determine M, in terms of a and y
(and P) as an eigenvalue:

g“lMl ~ {fo(0) £, (0)}. (6.11)

This expression is applicable for either sign of M.
For a neutrally stable disturbance, we have

R — glzl'Mll ~ _ﬁ

s \/3(al)2. (6.12)

The corresponding flow for case (2), given by

W(z) ~ W(0) ““z‘[1+<|az| \/3)(1—3—‘23)], (6.13)

is now asymmetric, the rolls having centres at az &~ —0.941, as shown in figure 8(b).
The flow field for case (2’) is the same except reflected in the plane at z = 0. As before,
the details of the density distribution in the central layer are of no consequence to
the leading asymptotic behaviour of the global mode, which now depends only upon
the moment M,. At lowest order, the density gradient dp,/dz is effectively the
derivative ¢ of a Dirac delta function, picking out the derivative of Wexp (iwz) at
z2=101in (6.1).

Figure 10(a) shows the dependence of the growth rate y upon the horizontal
wavenumber « for fixed values of M, (such that al € 1) and v/D = 1. As in case (1),
these curves derived from (6.11) and (6.4) correspond to the central layer acting as
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an infinitesimally thin interface, now characterized by the parameter M,. It can be
shown from (6.11) and (6.4) that, for each curve, y becomes proportional to of as
a— 0. This power law cannot be expressed in terms of non-dimensional variables
without involving v and D. Thus, the behaviour of the curves very near the origin
does not describe the inviscid and non-diffusive limit, unlike the Rayleigh-Taylor
instability (case 1). We take up the inviscid, non-diffusive limit via a different type
of analysis in §7.

Case (3): a layer contarning heavy and light fluid equally

Density stratifications of type (3) are ones for which the density approaches the
same value above and below the central layer, and for which this layer possesses zero
net excess mass. The first two terms on the right-hand side of (6.6) thus vanish. The
integral

Y
—iM, = J z1dz,
® —o Po
representing the first moment of interfacial excess mass per unit area divided by p,,
now determines the dynamic stability of the stratified fluid. Equation (6.6) leads to
a homogeneous system of three linear equations in the quantities W(0), W’(0) and

W”(0), for which the moment M, represents an eigenvalue. Straightforward
calculations lead to the expressions

ga2M2~ 2 1 2
vD  £0)+{fo(0) f3(0)  f1(0)  f£o(0)—{fo(0)f2(0)}

where the first two refer to case (3), for which M, > 0 (i.e. light fluid above the heavy
fluid), and the last refers to case (3’), for which M, < O (i.e. light fluid below the heavy
fluid).

For a state of neutral stability, the two modes for case (3) lead to the same
asymptotic dependence of the Rayleigh number on the horizontal wavenumber, viz.

(6.14)

glM

— 2
R="02 ~ 16al. (6.15)

The corresponding flows, given by
W(z) ~ W(0){1 + |az| + (a2)?}e *?, W(z) ~ W (0)z(1 + |az|) e =, (6.16)

are illustrated in figure 8(c and d).

The first mode is even and corresponds to the global instability mechanism
described above, with the difference in detail that there are now separate cells above
and below that merge into peanut-shaped rolls. The second mode is odd and shows
a new type of global instability that operates by a mechanism entirely different from
the tilting-sliding process characterizing the disturbances discussed previously. The
new mechanism can be understood by examining the streamline pattern in figure 8 (d).
On the scale of the diagram, the central layer is infinitesimally thin and coincident
with the horizontal x-axis. The flow strips off light fluid from the upper part of the
central layer, just above the axis, and carries it at first horizontally and later
upwards, and likewise strips off the heavy fluid just below the axis and carries it
downwards. In this mechanism there is no tendency for the central layer to deform.
Instead, potential energy is released in the half-spaces z 2 0 separately.
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Neutral stability for case (3’), for which M, is negative, is characterized by

glM,
R = — ~ . .
5~ 8al (6.17)

As shown in figure 8(d), the disturbance flow,
W(z) ~ W(0) (1 +|az]) e, (6.18)

is qualitatively the same as in case (1) and corresponds to the tilting-sliding
mechanism.

The flows for cases (3) and (3") correspond to a +48” distribution for dp,/dz. The
Rayleigh number for neutral stability goes to zero with the first power of «, as in the
sinusoidal case. For the even modes this is not surprising, since the density
stratifications of types (3) and (3’) each contain one heavy and one light layer and
therefore comprise an isolated period of the sinusoidal profile. The stripping
mechanism represented by the odd mode is evidently as efficient in releasing
potential energy as the tilting-sliding mechanism.

Figure 10(b) shows the functional dependence of the growth rate y on the
horizontal wavenumber a for the case (3) even modes, for fixed values of M, and
v/D = 1, determined numerically from (6.14) and (6.4). As in case (2), the behaviour
of the curves very near the origin, where y is now proportional to o, does not describe
the inviscid, non-diffusive limit.

The fact that the preceding asymptotic formulae give W as a function involving |z|
indicates the existence of a singularity buried within our approximate scheme. Direct
computation for case (1) shows that W and its first four derivatives, as given by (6.7)
or (6.10), are continuous at z = 0, but that d®W/dz® suffers a jump. In cases (2) and
(3), d*W/dz* and d®W/dz® respectively suffer jumps. These observations, which are
consistent with the interpretations of the density gradients dp,/dz in terms of the
delta function, indicate that corrections to the leading asymptotic behaviour of W(z)
begin, at a certain order, to exhibit structure on the small spatial scale of the central
layer thickness /. This is as it was in the sinusoidal case (cf. equation (5.19)), where
the leading term for W(z) was independent of z, but the first correction term was
periodic with period 2r/k. Thus, the regular expansion procedure embodied in (6.2)
cannot be carried out to arbitrarily many terms. Equation (6.2) should be regarded
as a finite sum, where we terminate the Taylor expansion with a remainder after the
last term for which the derivatives of W involved are continuous.

Appreciable thickness of the central layer

The preceding leading-order asymptotic formulae apply when the thickness of the
central layer is negligible in comparison with the horizontal wavelength. Thus, [ does
not appear explicitly, and, as is evident from the dimensionless relations in figure 10,
is present only in the interfaece parameters M, and M,. It is of interest to improve the
approximation scheme by calculating corrections to the leading behaviour, and
thereby to ascertain the dynamical consequences of finite !. Here we focus upon
neutral disturbances for illustrative purposes.

In order to derive a refined approximation for the Rayleigh number R in case (1),
we retain all the displayed terms on the right-hand side of (6.6), and substitute for
R the following expansion in powers of al:

R ~ (al)®* (147, (ad) + rp(el)?],

13-2
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in which the values of the coefficients r, and r, are to be determined. We similarly
introduce

W(O) ~ W)+ W,al, W(O)~W,

where #7,, W1, %, are coefficients and the lowest-order terms are already known
from (6.10). Upon collecting terms multiplied by like powers of al, (6.6) becomes

3W(z) M [ W,
1ew(o) ~ o)+ {m |2 e+ E ‘(z’] +r B
M, [ W W
+(al)2{2M—:l2[W?0)Fo(z)+2W(2))F1(Z)+F2(z)]
M, [#i+r, W
+m[%:))°ﬁ'o(z)+rlFl(z)]+r2Fo(z)}, (6.19)

where M, and M, are now defined solely by (6.3) (since the moments of p,/p, do not
exist when M, + 0) and we have put F(z) = a®*f,(z) for brevity. It is evident from
(6.3) that the ratios M,/M,l and M,/M,I* represent O(1) numbers. Validity of (6.19)
at z= 0 confirms the leading behaviour (6.9) and requires that the coefficients
multiplying al and («l)? vanish. This leads to the conclusion that r, = 0, and gives an
expression for r, in terms of various quantities, all of which are known except for #7.
The latter is found by differentiating (6.19) with respect to 2. In this way, it can
be shown that the Rayleigh number for case (1) possesses the asymptotic behaviour

a (ad)?[ M, (M 2

It is seen from (6.20) that non-zero values of M, of either sign decrease the
Rayleigh number for neutral stability. This is expected, because non-zero M, is the
cause of instability in cases (2) and (2’), and so here represents a destabilizing factor,
albeit weaker than the dominant density jump.

For a density variation that is odd in z, like either of the two curves in figure 7 (a),
M, =0. If the density increases monotonically with z (as illustrated by the
continuous curve), then M, > 0, implying that increase of the thickness of a central
layer in which there is a simple smooth transition between the two different densities
at |2| - o0 has a stabilizing influence, as is generally to be expected. On the other hand
M, <0 for profiles like the dotted curve in figure 7(a), and here there is a
destabilizing influence. This is essentially because the differential sliding motions of
the different parts of the central layer go with the bulk motion of the two semi-infinite
regions when M, < 0 whereas when M, > 0 they go against them.

Similar arguments yield for case (2)

R~ :/—63(al)2 [1 + (aly? 3]2;32] (6.21)

when p, is an even function of z, so that, in particular, M, = 0. For each of the two
density distributions shown in figure 7(b), M, and M, have the same sign and non-
zero values of [ again have a stabilizing influence.

The leading-order approximations (6.15) and (6.17) for cases (3) and (3’) cannot be
improved by the present regular expansion scheme, because calculation of the first
correction term would involve derivatives of W possessing singular behaviour, as
observed above.
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6.2. Some exact results for special density profiles of types (2) and (3)

The preceding asymptotic analysis for long wavelengths and small growth rates has
established forms of global disturbance to which the various stratifications are highly
unstable, and it has shown that at various orders in al these disturbances are
governed asymptotically only by certain moments of the undisturbed density
gradient. For arbitrary values of the parameters the stability properties will of
course be influenced by the precise nature of the density stratification, and it would
be useful to have some more general results, not restricted to small values of a and
¥, for representative profiles. In the present subsection we consider density
distributions in cases (2) and (3) such that p, is piecewise constant, for which (2.11)
can be solved exactly. Although such profiles would be difficult to realize in practice,
they have the mathematical advantage of furnishing explicit expressions with which
the predictions of the asymptotic analysis can be compared.
A piecewise-constant density profile of type (2) or (2) is

P1(2) _ 0, Iz >1,
Po 4, |2l <1,

with M, = —2A41. The corresponding gradient is given by

1dp, M,

———=—[8(z—=0)—68(z+1)]. .

oo dz 2 [6(z—=1)—d(z+1)] (6.22)
Substitution into (6.1), use of the special properties of d(z) and subsequent inversion
gives
_gaiM,
"~ 2Dl

where we have used the identity & 71| f:,(a)) exp (iwe)] = fy(z—¢) with ¢ = 1. Validity
of this expression for W(z) at z = +1 leads to two homogeneous linear equations in
W(l) and W(—1) which determine M, as an eigenvalue, thereby yielding the exact
formula

W(z) (WD folz=D)—=W(=D) folz+ )],

2
9B — oyt o - Lt (6.23)

It is worth noting that the formalism embodied in the functions f,(z) represents a
very efficient way of arriving at (6.23). The standard approach to this type of
problem, as exemplified by previous analyses of Rayleigh-Taylor instability, would
involve expressions for W as linear combinations of the six linearly independent
solutions of equation (2.11) with zero right-hand side, valid in each z-interval where
dp,/dz = 0. A disturbance mode that decays to zero as |z] > 00 would then involve
three unknown coefficients for each semi-infinite body of fluid, and six for the central
layer. Determination of M, would require evaluation of a 12x 12 determinant
derived from matching conditions imposed at the interfaces at z = +1. Our approach,
a by-product of the asymptotic analysis, reduces this to a much more manageable
2 x 2 determinant.

For the representation
0, lzl > 1,

p‘—(z)= —4, 0<z<l,
Po
A, —l<z<0



384 Q. K. Batchelor and J. M. Nitsche

of case (3) (4 > 0) and (3') (4 <0), M, is equal to 241%, and the density gradient
assumes the form

1dp, _M,
PR ik [8(z+1)— 28(z) + 8(z—1)]. (6.24)
Manipulations of the same type as before lead to the equations
o?M,\? M.
AT —HO)10) o2 (552 + 10 —suein (E) 1 = o,
(6.25)
go’M, 2

vDIE "~ fy(0)—fo(20)’

The two roots of the quadratic equation correspond to the even modes for cases (3)
and (3"), and the second equation applies to the odd mode for case (3).

Equations (6.23) and (6.25) represent exact relations applicable to arbitrary values
of the parameters. Numerical and algebraic calculations for these examples where p,
is piecewise constant confirm that the asymptotic analysis correctly predicts the
limiting dependence of the Rayleigh number upon al for neutral stability and al < 1
(cf. equations (6.12), (6.15), (6.17) and (6.21)), as well as the limiting functional
dependence of y upon a at small Rayleigh numbers (cf. equations (6.11) and (6.14)).
This serves as a check on the approximate approach.

6.3. Numerical solution of equation (2.11) for representative density profiles
of types (1)~(3)
As representative density profiles for more detailed numerical study we have selected
the following forms related to the Gaussian function for cases (1), (2) and (3)
respectively :

¥=AF(z/l), AF'(z)l), AF"(2)D), (6.26)
0

1S
where F() =terf¢ = n"%f e ds (6.27)
0
and a prime denotes differentiation with respect to the argument { = z/I. These are
the functional forms drawn in figure 7.

A numerical approach necessarily involves some element of truncation, and we
have elected to introduce stress-free constant-density boundaries at planes z = +.%
far removed from the central layer (cf. Matthews 1988). For sufficiently large &, the
Rayleigh number R® and growth exponent y° calculated for the bounded system
(distinguished by superscript b) are expected to be good approximations to the
corresponding stability properties for the original unbounded system, as dem-
onstrated by Matthews for his cellular low patterns. The convergence as . - co will
be slower here, however, because fluid of constant density above and below is less
effective at suppressing the disturbance than stably stratified fluid and the flow
decays exponentially on the lengthscale o ! (cf. figure 8). Thus, # needs to be large
compared with the horizontal wavelength in order not to affect global disturbances.

For given #, an even disturbance mode W(z) is expanded in the series (4.2).
Substitution into (2.11), multiplication through by any one term of the series and
subsequent integration from 0 to % with respect to z leads ultimately to an infinite
homogeneous system of linear equations of the form

[A—(al)*B]W =0, (6.28)
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where A = vD/gAD is the eigenvalue, W = (W}, W,, ...) is the corresponding vector of
expansion coefficients, / is the identity matrix and the matrix B is given by

an = (2Pm)_l(fm+n—1 +fm—n)a (6.29)
with
_[r nz(m—%)2} { N 1r2(m—%)2} { nz(m—%?}
P = {Da2 i+ () | lva? i+ (. )? 1+ (e )? (6.30)
2l (¥ 1 dp, knz
and flc = ﬁ , '[TOECOS(?) dz. (631)

Substitution of the expressions (6.26) into (6.3) shows that the relation between the
eigenvalue A and the Rayleigh numbers defined in (6.9), (6.15) and (6.17) is R = A™!
in case (1), R = 247! in case (3), and R = —2A7! in case (3'). For global modes these
relations involve the largest positive eigenvalue in cases (1) and (3) or the negative
eigenvalue of largest magnitude in case (3’). Accurate approximate expressions for
the coefficients (6.31) can be derived using contour integration techniques. Matthews
(1988) determined the Rayleigh number for neutral stability as the smallest (real,
positive) zero of the determinant corresponding to a truncation of a system
equivalent to (6.28). For large matrices, calculation of the determinant (here using
a linear equation solver) represents a viable approach, as we have checked, but
probably not the most efficient. We have therefore generally opted to compute values
of the Rayleigh number from the appropriate eigenvalue of B, the latter being
determined with the help of EISPACK subroutines (Dongarra & Moler 1984).

The generation of accurate numerical results requires consideration of two criteria.
First, one must choose £ so large that the pertinent eigenvalue of the bounded
system is close to the actual eigenvalue of the unbounded system. The preceding
asymptotic analysis indicates that, for neutral disturbances at small al, W invariably
decays as (az)Y exp (—az) where N = 1 or 2. Thus, smallness of (. )Y exp(—a<)
ensures that W has decayed more-or-less completely when the free surface is reached ;
our numerical calculations were performed with «.¥ = 10. Second, for given & one
should operate with sufficiently many modes. The first zero of the Mth mode occurs
at z & £ /2M. Resolution of structure on the scale [ would require this quantity to
be small compared with I. The calculations indicate that M ~ %/l is already
sufficiently large for purposes of calculating the first one or two eigenvalues (in which
we are primarily interested), corresponding to the least oscillatory even eigen-
functions. It is evident that the numerical approach involves large matrices for
small values of al, and therefore demands more computational power as al—0.
Fortunately, this is precisely the regime where the asymptotic analysis becomes
accurate. In conjunction, the asymptotic and numerical approaches allow quan-
titative analysis of disturbances at arbitrary wavelengths.

The preceding discussion has been restricted to disturbance flows symmetric about
the central layer (i.e. even functions of z). We have also encountered odd modes
{(case 3) and asymmetric modes (cases 2, 2’). The same type of numerical technique
applies provided one utilizes a sine series and, most generally, the series

W= W@Pcos[rnk—1)z/ L1+ X2 WPsin (nkz/ L ). (6.32)
k=1 k=1

Separate schemes were devised for these other cases, but the preceding paragraphs
indicate the nature of the calculations and it is not necessary to present the details.
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Ficure 11. Dependence of the Rayleigh number for neutral stability on the horizontal wavenumber
a for density variations of types (1), (2), (3), (3). The continuous lines represent values calculated
for the representative functional forms (6.26) by numerical solution of equation (2.11). Broken lines
represent the limiting power laws predicted by the asymptotic analysis for al 0.

Figure 11 compares computed values of the Rayleigh number for neutral stability
with the predictions of equations (6.9), (6.12), (6.15) and (6.17), and shows clearly the
approach of the ‘exact’ values to the corresponding leading asymptotic behaviour.
Figure 12 (a—d) illustrates, for all the cases considered, the computed dependence of
the growth rate v on the horizontal wavenumber a for fixed values of the pertinent
Rayleigh number. Although these graphs have the same general appearance as those
in figures 9 and 10, their significance is different. The curves in figures 9 and 10 refer
to circumstances in which the central layer is negligibly thin and its thickness does
not enter explicitly into the computed Rayleigh number or growth rate. Thus, figures
9 and 10 represent, in different dimensionless variables, an expanded view of figure
12 (a—d) in the vicinity of the origin, corresponding to small values of the Rayleigh
number. Figure 12 (a—d) is not restricted to the universal asymptotic properties of the
various types of density distribution at small Rayleigh numbers. Rather, it shows for
the simple representative density profiles (6.26) the effect of finite layer thickness (al
not very small). It is seen that appreciable thickness of the central layer reduces the
growth rate and increases the Rayleigh number for neutral stability relative to the
leading-order asymptotic values, and therefore represents a stabilizing factor. This
conclusion agrees with the qualitative predictions of the higher-order asymptotic
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Ficurk 12. Growth rate y as a function of the horizontal wavenumber a for density stratification
of types (1), (2), (3) and (3’). Continuous curves represent numerical values for the functional forms
(6.26). Broken curves in (a), (b), (c) and (d) represent the relations (6.8), (6.11), (6.14) and (6.14)
respectively derived from the leading-order asymptotic analysis valid when al < 1. The additional
dotted curves for case (2) correspond to the piecewise-constant density profile (6.22), and those for
cases (3) and (3) correspond to (6.24). In every case P = 1. The curves for case (3), odd mode, are
quantitatively similar to those for the even mode.

analysis. Comparison of the curves corresponding to the piecewise-constant (dotted
curves) and Gaussian-derived (continuous curves) density variations shows that
discontinuities have a destabilizing influence, although appreciable thickness of the
central layer decreases the growth rate for these two kinds of profile relative to the
curves given by the asymptotic analysis.
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7. The energy balance for a disturbance with large horizontal wavelength
whenv=0and D=0

For mathematical reasons the analysis in §6 was limited to small values of the
Reynolds number yI?/v, a limitation which is not serious in an examination of neutral
and adjoining disturbances. We consider now the other extreme case in which the
Reynolds number yI?/v is large, so that the motion is effectively inviscid and also
diffusionlesst (assuming D/v is not too large) everywhere. It is possible to give a
simple physical description of the disturbance motion under these conditions from
which values of the growth rate y may easily be derived by considering the balance
of kinetic and gravitational potential energy. This physical picture is applicable to
all those undisturbed states that we have found to be markedly unstable to global
disturbances which tilt the layers of non-uniform density and cause sliding of the
fluid within the layers, viz. the case of a sinusoidal density distribution (§5) and cases
in which p, differs from zero only in a central layer (§6).

We note first that when v = 0 and D = 0 the governing equation (2.11) reduces to
the second-order equation

2
d W+a2W(

d
5 A )= 0, (1.1)

Vpo dz

where, as before, the vertical component of velocity of a normal mode has been
written as

w = W(z)e" cosax (7.2)

and « is the horizontal wavenumber of the disturbance. The wavelength 2mn/a will be
assumed to be large compared with any length characteristic of the undisturbed
density distribution, and it follows from (7.1) that W is a slowly varying function of
z on the scale of that length.

7.1. The case p, = p, A sinkz

We take it for granted that here the most unstable disturbance is such that W is
periodic with respect to z, with period 27/k, and is an even function of z. There is no
actual need in this case for a new method of analysis because the formulae (5.17) and
(5.18) are valid for any Rayleigh number and give the growth rate as

y = 27 Hagd)} (7.3)

when v = D = 0 and a/«x < 1. The relation between y and a here is the same as for
Rayleigh-Taylor instability. Moreover there exists an explicit solution of (7.1), now
the Mathieu equation, which is periodic with period 2m/« and for which (7.3) may
readily be seen to be the characteristic-value equation when a/x < 1 (Whittaker &
Watson 1915, §19.3). However, we shall apply the energy-balance method to the case
of a sinusoidal density distribution in order to gain more insight into the global
instability mechanism, and relations like (7.3) will serve as a check on its correctness.

Consider first the total kinetic energy of the disturbed fluid at time ¢. The vertical
component of velocity of the fluid is given by (7.2), in which W(z) is approximately
constant, and equal to W, say, when a/x < 1. To obtain the horizontal component «
we construct the equation of motion of a thin material sheet of fluid which in the

1 Note that there is no problem about the assumption of a steady undisturbed state in this case.
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undisturbed state is planar and horizontal at vertical position z. In the disturbed state
the vertical displacement of the sheet at horizontal position x is

n= —%eﬂ cosaz, (7.4)

in conformity with (7.2). The sheet is now locally inclined to the horizontal at a small
angle 0y/0x, and the fluid of excess density p, in the sheet slides freely, either down
if p, > 0 or up if p, <0, with a local velocity g given (after use of the Boussinesq
approximation) by

9 _ 97
Po ot ==/ ox ’
whence u= azf W, et sin ax sin k2 (7.5)

correct to the first order in disturbance quantities. The kinetic energy of the fluid per
wavelength 2x/a in the z-direction, per wavelength 2x/x in the z-direction, and per
unit depth in the y-direction, is thus

aK /o /K
T=HJ7 f 100(1 + A4 sin kz) (u* + w?)dz dz
[1} [1}

agid? ) (1.6)

=1p, Wie™ (——274 +1

The other form of energy is gravitational potential energy, which for the same
body of fluid is increasing at the rate

dP aK T/ /K ,
E=4_1t2.r Ji w(p,+p’)gdxdz. (1.7)
[1} [1}

In the absence of diffusion (2.8) reduces to

,__wdp
=g (7.8)

which may be substituted in (7.7). Only the density fluctuation contributes to the
integral with respect to x in (7.7), and we obtain

dP — K2P09A 2yt i 2
T amy e . W?2coskzdz. (7.9)

Our approximation that W(z) is constant is too crude here, because it omits the small
but vital vertical component of velocity due to the sliding of the fluid sheets. A
better approximation, obtained from (7.5) and the mass-conservation relation
Ow/0z = —0u/oz, is

2
W(z) = W, (1 +a;yifcosxz).

When this is substituted in (7.9) we get

ar algA?

A= oy PWie
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The energy balance requires that d(7'+P)/dt =0, where T is given by (7.6),
whence we recover the known expression (7.3) for the growth rate y. It is noteworthy
that this expression is independent of «. This results from the fact that every initially
horizontal fluid sheet is deformed and develops a sliding motion in the same way
regardless of the vertical distribution of density.

7.2. The case in which p, = 0 except in a central layer

Again we calculate the total kinetic energy and rate of change of potential energy for
a disturbance whose horizontal wavelength is large compared with the layer
thickness. In this case the vertical velocity component is approximately uniform
within the central layer, and we put W(z) = W, there. Outside the layer the motion
is irrotational and the velocity potentials in the regions above and below the layer
are

¢ = $%exp (Yt F az) cosax.

The total kinetic energy of the fluid per unit wavelength in the x-direction and per
unit length in the y-direction is thus approximately

1
T= 2P0 W2e, (7.10)

the contribution from the relatively thin central layer being negligible.

The change in the potential energy on the other hand is dominated by the
contribution from the central layer. Beginning again with (7.7) (but with the
integration with respect to z now over all values of z) and using (7.8) we find

= 2 pl
dt 27WJ1 j dxdz

__(Z_g 2n/a (o0 a_u
= TC‘)’L j_wwaxpldxdz. (7.11)

The sliding velocity of a fluid sheet in the central layer, analogous to (7.5), is

— 2Py, o7t sin az, (7.12)
Y"Po

and when the expressions (7.2) and (7.12) are substituted for w and « (7.11) becomes

dP _« g 2 2yt * P%
- —dz. 7.13
d¢t = pWie el 719
The requirement of zero rate of change of the total energy 7'+ P then gives the
approximate result © 2
vt = a’g f %dz, (7.14)
—o Fo

validwhenal < 1and yi?/v » 1.The parameter of the undisturbed density distribution
that determines the growth rate is different from that at the small Reynolds numbers
investigated in §6. In particular there is here no qualitative difference between zero
and non-zero values of the total excess mass in the central layer. For the illustrative

case A 22



Instability of unbounded stratified fluid 391
the growth rate is Yt = (2m)taltlg242. (7.15)

The isolated central layer of non-uniform density is slightly less unstable than a
sinusoidal density distribution inasmuch as the growth rate in the former case is
smaller, by a factor of order (al)*, than that in the latter case.

With regard to the requirement of high Reynolds number of the disturbance flow,
we see from (7.15) that this amounts to

2

% ~ (al)iR}> 1,

where R = gAI®/v* is the Rayleigh number (for Prandtl number unity) based on the
layer thickness. The physical conditions required for satisfaction of this inequality
are not extreme ; it would be satisfied, for example, in the case of a layer of thickness
1 cm in water with a density variation given by 4 = 0.01 and a wavenumber
al = 0.1. The value of the analysis for an inviscid fluid without diffusion lies also
in its simple demonstration of the mechanism of the instability.
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