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Suppose that the density of stationary unbounded viscous fluid is a sinusoidal 
function of the vertical position coordinate z. Is this body of fluid gravitationally 
unstable to  small disturbances, and, if so, under what conditions, and to what type 
of disturbance ‘1 These questions are considered herein, and the answers are that the 
fluid is indeed unstable, for any non-zero value of the amplitude of the sine wave, to 
disturbances with large horizontal wavelength. These disturbances have approxi- 
mately vertical velocity everywhere and tilt the alternate layers of heavier and 
of lighter fluid, causing the fluid in the former to  slide down and that in the latter to 
slide up, leading to a sinusoidal variation of the vertically averaged density and 
thereby to reinforcement of the vertical motion. The identification of this novel and 
efficient global instability mechanism prompts a consideration of the stability of 
hher cases of unbounded fluid stratified in layers. Two other types of undisturbed 
density distribution, the first an isolated central layer of heavier or lighter fluid, with 
density varying say as a Gaussian function, and the second an isolated layer of fluid 
in which the density varies as the derivative of a Gaussian function, are found to  be 
unstable, at all values of the magnitude of the density variation, to disturbances 
having the same global character. For the first of these two types of density 
distribution, the behaviour of a disturbance with long horizontal wavelength 
depends only on the net excess mass of unit area of the central layer, and for the 
second it depends only on the first moment of the density in the central layer. For 
the second type there arises another global instability mechanism in which light fluid 
is stripped away from one side of the layer and heavy fluid from the other without 
any tilting. In  all cases the properties of a neutral disturbance are determined 
numerically, and the growth rate is found as a function of the Rayleigh number, the 
Prandtl number, and the horizontal wavenumber of the disturbance. An energy 
argument gives results easily for the inviscid non-diffusive limit, when all 
disturbances grow, and reveals the tilting-sliding mechanism of the instability of a 
disturbance with large horizontal wavelength in its simplest form. 

1. Introduction 
Most of the known results concerning the gravitational stability of stationary 

stratified fluid refer to  fluid confined between two horizontal plane boundaries. In 
this paper we consider the stability of stationary fluid which by contrast extends to  
infinity in the vertical direction with a specified continuous distribution of density. 
For simplicity here we shall suppose the fluid to  be completely unbounded, but the 
distinguishing feature of the cases considered is that  there are no horizontal 
boundaries present. The absence of horizontal boundaries allows vertical disturbance 
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velocities of the same sign over large ranges of values of the vertical coordinate z, and 
we shall see that this is a common property of the disturbances to which the fluid is 
most unstable. There are some novel features of the instability of stratified fluid in 
the absence of horizontal boundaries, and we have thought i t  worthwhile to take a 
general point of view and to study the stability properties of classes of vertical 
density distribution. Throughout the paper we consider only small disturbances 
governed by linear equations. 

The particular question that drew our attention to problems of stability of 
stratified flow without horizontal boundaries arises in the theory of sedimentation 
waves in dispersions of small particles (Batchelor 1991). It is known from the work 
of Kynch (1952) that, when the concentration of particles varies so slowly with 
respect to z that the local mean fall speed of particles is approximately the same 
function of local concentration as in a statistically homogeneous dispersion, a 
sinusoidal variation of concentration with small amplitude propagates vertically (as 
a kinematic wave) without change of form. Jackson (1963) subsequently showed that 
inclusion of the effect of particle inertia in the equations governing such a wave leads 
to growth of the wave amplitude. There are other effects, not considered by Jackson 
in this early work, which are stabilizing, but later studies (Batchelor 1988) have 
established that the destabilizing effect of particle inertia is dominant under certain 
conditions which are realizable physically. Thus the amplitude of a sinusoidal 
sedimentation wave with horizontal wave front may grow exponentially with time 
in a fluidized bed. There arises then the question : since the mean density distribution 
in a sedimentation wave is statically unstable in every alternate half-wavelength, is 
there a secondary overturning instability which sets in when the wave amplitude 
exceeds a certain value ? Inasmuch as a dispersion of small particles in fluid with non- 
uniform concentration behaves dynamically like a continuum with non-uniform 
density when the speed of fall of a particle relative to the fluid locally is sufficiently 
small, we may expect to  be able to give a partial answer to this question from results 
for the instability of a continuum with a sinusoidal density distribution. To go 
further and to allow for the effect of the relative motion of the fluid and the particles 
would take us into considerations of two-phase flow theory which do not have a 
natural place in this paper, so we shall not pursue this potential application of the 
stability theory here. The purpose in mentioning it is to indicate the original 
motivation for our work. 

It will be supposed herein that the fluid is viscous and that the conserved quantity 
affecting the fluid density (e.g. heat, mass of solute, number of suspended particles) 
diffuses through the fluid. We shall wish for convenience to be able to make the 
conventional assumption of hydrodynamic stability theory that the undisturbed 
state is steady, and we are aware that the only vertical distribution of density with 
which this is exactly compatible in the absence of sources of buoyancy is one with 
uniform density gradient. Even so, we shall suppose that some other density 
distributions may exist in the undisturbed state. In  some cases one can give an 
a priori justification for supposing that the specified density distribution in the 
undisturbed fluid is approximately steady. For example, Matthews (1988) invoked 
the effect of solar heating of the surface layers of a lake to justify the steadiness of 
his assumed cubic density profile ; and the sedimentation waves mentioned above are 
known to have steady amplitude under certain conditions. In other cases the 
justification may be a posteriori inasmuch as one finds that the disturbance has 
growth timescales small compared with the time for significant change of the density 
profile by diffusion or has lengthscales large compared with the distance over which 
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appreciable diffusion occurs. There are various possibilities, and they are best 
considered in a specific context after the results for the assumed steady density 
distributions are available. 

After setting out the usual equations governing a small disturbance of a stratified 
fluid ($2), we determine the rate of growth of a disturbance of arbitrary form when 
the undisturbed vertical density gradient is uniform and positive ($3). We then begin 
the discussion of undisturbed density gradients which are non-uniform, taking first 
the case studied by Gribov & Gurevich (1957) and Matthews (1988) in which the 
density gradient is negative everywhere except within a layer of finite thickness ($4). 
The absence of horizontal boundaries is not of major significance here, because the 
static stability of the fluid outside the layer prevents up or down currents of large 
vertical extent in any event. It is crucial however in the case in which the fluid 
density is a sinusoidal function of z in the undisturbed state ($5). Up or down 
currents of large vertical extent also play an important role when the density is 
uniform outside a central layer with the same values on the two sides and there are 
various types of density distribution within the layer ($6). The main contribution of 
this paper is the discovery that in all these new cases there are global types of 
disturbance with large horizontal wavelength which are not associated closely with 
local regions of static instability and which grow exponentially however small the 
magnitude of the variation of density in the undisturbed state. An energy argument 
which is applicable to  fluid with zero viscosity and density diffusivity reveals one of 
the global instability mechanisms clearly ($7). Both a t  low and a t  high Reynolds 
numbers of the disturbance motion the precise form of the density distribution 
within the layers has only a secondary influence on the stability properties. 

2. Equations governing a small disturbance to stationary stratified fluid 
The fluid density and pressure in the undisturbed stationary state will be written 

as 

J 

where po and p, are representative values. The vertical coordinate z is positive 
upwards. I n  the disturbed state the fluid velocity is U, with components u, v, w, and 
the density and pressure are 

P = PO+Pl+P’> P = Po-g  (PofP,)dz+P’. I 
The equation of motion for the fluid, assumed to  have uniform viscosity ,u, is then 

If now we assume Ipl +p’I 6 po and make the Boussinesq approximation that density 
variations are significant only through their influence on the gravitational force, the 
density p multiplying the fluid acceleration in (2.1) may be replaced by po and the 
mass-conservation relation reduces to  

V - u  = 0. (2.2) 

Thc linearized form of (2.1) is then 

au 
at 

Po - = plg - Vp‘ + pvzu. (2.3) 
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The variation of fluid density is normally a consequence of non-uniformity of the 
intensity of some conserved physical quantity such as heat or mass of solute or 
number of small suspended particles. This conserved quantity is convected with the 
fluid and may also be diffused relative to the fluid. If we assume that the diffusivity 
D is uniform, the conservation equation for the intensity C (standing for temperature 
or concentration) in incompressible fluid in the absence of external sources is 

ac 
-+u*VC = DV2C. (2.4) at 

The relation between p and C is linear for small variations in p and may be written 
as 

P-Po = P(C-Co), (2.5) 

where p is a constant dependent on the physical meaning of C. Equation (2.4) then 
becomes 

+p’)  + 24. V ( p l  +p ’ )  = DV2(p1 +p ’ ) .  (2.6) at 

This is the point a t  which we 
satisfied in the undisturbed state 

make the assumptions (i) that equation (2.6) is 
when the fluid is stationary, whence 

and (ii) that the undisturbed state is steady, whence ap1/at = 0.  These two 
assumptions are exactly compatible only if a p l / a z  is uniform. As explained in the 
introduction we shall ignore the inconsistency involved in the adoption of nonlinear 
density profiles and leave for later ad hoc consideration the question whether in a 
particular case there is a distributed source of buoyancy in the fluid, represented by 
an additional term on the right-hand side of (2.7) which is equal and opposite to 
Da2pl /az2,  or whether both terms in (2.7) are of small magnitude in some appropriate 
sense, or whether the consequences of these magnitudes not being small are 
immaterial for certain purposes. The linearized form of (2.6), after use of (2.7), is then 

Equations (2.2), (2.3) and (2.8) govern the behaviour of a small disturbance to an 
undisturbed state in which the fluid is stationary and the density p1 depends on z 
alone. The dependent variables u,  ZI, p’, p‘ may be eliminated from these equations, 
giving 

as the equation for the vertical velocity component w, where v = p/p0  and V: denotes 
the Laplacian operator in the horizontal plane. 

We shall assume the existence of normal modes of disturbance, and suppose all 
disturbance quantities associated with one mode to be proportional to exp ( y t ) .  In the 
absence of bulk rotation and externally imposed magnetic fields and other effects 
causing oscillatory behaviour of an overturning disturbance, it seems clear on 
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physical grounds that y must be real for a neutral or growing disturbance; and a 
formal proof for the case of fluid with uniform density gradient in a vertical tube has 
been given by Yih (1959). We shall take it for granted that a neutral disturbance is 
characterized by y = 0, and so is steady, for all the different forms of the function 
pl(z) considered here. 

In the absence of vertical boundaries Fourier components of the disturbance with 
respect to a horizontal coordinate x are independent. Hence for a normal mode we 
may write 

so that (2.9) becomes 

w = W(z)  eyt cos ax, p’, p’ K eyt cos ax, u K eyt sin ax, (2.10) 

(2.11) 

We resist the temptation to make the variables dimensionless at this stage, because 
the choice of the required representative length depends on the particular 
undisturbed density distribution. Definition of the Rayleigh number as a governing 
parameter likewise must wait. 

Solutions of (2.11) will now be considered for different functional forms of dp,/dz. 

3. A uniform undisturbed density gradient 
This is the classical case on which previous work on instability of stationary 

stratified fluid has concentrated. However it seems not to have been noticed in the 
literature that there is a simple explicit solution for the stability exponent y in the 
case in which there are no boundaries and the fluid extends to infinity in all 
directions. 

All coefficients in the disturbance equation (2.11) are constant here, so Fourier 
components of W with respect to z are independent. We thus lose no generality by 
writing 

W ,  p’ K cos KZ,  u, p’ K sin KZ (3.1) 

and substituting in (2.11) to obtain 

One root of this quadratic equation for y is 

showing that the disturbance grows exponentially (y  real and positive) if 

-- dpl> 1. a2 
S =  (2 +a2)3 Dvp, dz (3.4) 

We see that for given a the smallest positive value of dpJdz for which a 
disturbance grows occurs a t  K = 0, corresponding to a disturbance mode with 
straight vertical streamlines for which the nonlinear terms in the full governing 
equations are identically zero. This is the first appearance of the common result that, 
in the absence of horizontal boundaries, up and down currents extending over large 
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vertical distances provide a very efficient way of releasing the potential energy of 
the undisturbed state. The value of the smallest undisturbed density gradient for a 
neutral disturbance with horizontal wavenumber a is thus 

(3.5) 

This simple case provides a standard with which critical gradients for other 
undisturbed states may be compared. 

4. Fluid with a statically stable density distribution except in a central 
layer 

There have been several studies of the instability of stationary fluid with a non- 
uniform density gradient in the context of what in geophysics is referred to as 
‘penetrative convection ’. This arises in systems where a fluid layer with positive 
vertical density gradient adjoins a t  least one semi-infinite region of fluid with 
negative density gradient. Roll motions driven by the unstable central layer are 
generally found to extend well into the stable regions, hence the name. Two of these 
studies which have some relevance to the present work, by Matthews (1988) and by 
Gribov & Gurevich (1957), will be described briefly here. 

Matthews (1988) considered the case of unbounded fluid in which the undisturbed 
density, regarded as a steady distribution maintained by a solar volumetric heat 
source, takes the form of a cubic polynomial in z :  

The appropriate Rayleigh number here is R = gAd3/Dv. The density gradient dp,/dz 
is positive for lzl < d / 2 / 3 ,  and the density po+pI takes the base value po at z = 0 and 
z = _+d (figure iu). Matthews solved the eigenvalue problem (2.11) with y = 0 by 
taking the Fourier transform with respect to z ,  which leads to a second-order 
differential equation with variable coefficients for the transform W ( w )  in consequence 
of the quadratic dependence of the density gradient on z. The value of R is 
determined by Runge-Kutta shooting from w = 0 subject to the requirement that 
W = 0 at some large value of w ,  as a numerical implementation of the condition that 
W ( w )  + 0 as w + co. The Rayleigh number for a neutral disturbance depends on the 
wavenumber 01 and is found to have a minimum value of 88.0 at ad = 1.26 (in the case 
of the first mode for which W is an even function of z - the minimum value of R for 
the first odd mode is several times as large). Numerical inversion of leads to 
streamlines exhibiting a surprisingly large central roll in the interval JzI < l.69d, 
extending well beyond the confines of the statically unstable layer, and symmetrical 
sequences of rolls of rapidly diminishing flow strength above and below. On physical 
grounds some penetration is expected, since a fluid element with the local maximum 
density a t  z = d / 2 / 3  experiences a downward gravitational force until it reaches fluid 
of the same density at z = -2d/2 /3 .  

With regard to both the primary roll structure and the feature of a minimum value 
of R a t  a non-zero horizontal wavenumber, the cubic density stratification is identical 
in its qualitative features with other systems (e.g. the BBnard flow cell) where 
horizontal planar boundaries or other constraints prevent upflow and downflow 
currents from extending to infinity. The negative density gradients in the semi- 
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(a) (6) 
FIQURE 1. Fluid with a statically stable density distribution except in a central layer. (a) The cubic 
dependence on z considered by Matthews (1988) ; ( b )  the piecewise-linear dependence on z 
considered by Gribov & Gurevich (1957). 

infinite regions outside the central layers here effectively confine disturbance flow to 
a region whose vertical extent is of the same order of magnitude as the thickness of 
the statically unstable layer. 

Quantitative information related to this observation is provided by Matthcws’ 
additional consideration of the influence of constant-density free or rigid boundaries 
at z = f 9. For free boundaries he expands W in the cosine series 

m 

w= c wkcos[7c(k-;)z/9], 
k-1 

which satisfies the pertinent boundary conditions. The coefficients Wk are governed 
by an infinite homogeneous system of linear equations, which yields a matrix 
eigenvalue problem. Matthews obtained numerical approximations for R by 
truncating the linear system a t  various orders, the largest being 4 x 4, and finding the 
smallest value of R for which the determinant vanishes. Among other conclusions, 
the calculations demonstrate that the minimum Rayleigh number for a neutral 
disturbance for L?/d = 3 is already close to the corresponding value for the original 
unbounded system, the intervening statically stable layers having effectively 
damped out the flow before it can reach the boundaries. Calculations for rigid 
boundaries yield the same qualitative conclusion. 

Previous analyses of penetrative instabilities have often addressed continuous, 
piecewise-linear density distributions which necessarily possess corners, requiring 
delta-function sources and sinks of buoyancy in the fluid (figure 1 b ) .  There exists an 
early analysis of this type by Gribov & Gurevich (1957) which bears some relation to 
the developments described in 955, 6. Among other calculations, these authors 
considered the limiting case in which the non-dimensional density gradients in the 
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semi-infinite statically stable regions above and below the central layer (C, and C, in 
their notation), now considered to be parameters independent of the gradient in the 
central statically unstable layer, are equal and tend to zero. As expected, for fixed 
C, the Rayleigh number (based on properties of the central layer of thickness h) for 
a neutral disturbance exhibits a minimum R, a t  a certain value of the horizontal 
wavenumber a,. The results have the intriguing feature that, in the limit as C, + 0, 
(i) both R, and a, tend to zero, and (ii) the depth of penetration of the corresponding 
convective rolls (their h*) is inversely proportional to a, and therefore increases 
without bound. The latter statement indicates that  the vertical extent of the 
disturbance flow is no longer limited, in order of magnitude, to the thickness of the 
central layer. The precise scaling dependences, extracted from their equations (45)  
and (46) ,  are as follows: 

1 

R,  - 3 4 ( h ~ , ) ~  and h* - 2.4 /am,  wherc hum - 0.60Ci.  (4 .3)  

Gribov & Gurevich give little indication of the form of the disturbance flow, and their 
analysis is so complex mathematically that the physical significance of these 
asymptotic relations is concealed. 

Neutral disturbances for which R and a are both small constitute a central feature 
of our new work. In  the next two sections we present an analysis of ‘global’ 
disturbances that uncovers the driving physical mechanism and illuminates its key 
asymptotic features. 

5. A sinusoidal undisturbed density distribution 
This is the case that initially motivated our study of instability of stratified fluid 

in the absence of horizontal boundaries. As explained in the introduction, a 
sinusoidal vertical distribution of particle concentration may arise spontaneously in 
a fluidized bed under certain conditions, and it is of interest to  know whether and 
when this sinusoidal distribution with growing amplitude becomes unstable to 
overturning disturbances. Provided the relative velocity of particles and the 
surrounding fluid is small, it seems likely that this overturning instability may be 
investigated on the assumption that the mixture of particles and fluid behaves as a 
new continuous fluid with the same mean density. Whether that assumption is valid, 
and the consequences for the stability properties if it is not, are matters for future 
investigation from two-phase flow theory. Here we consider only the overturning 
instability of a continuous fluid and leave aside the possible application to fluidized 
beds. 

The undisturbed density will be written as 

po +p l  = po( 1 + A  sin KZ) 

in which the constant A is positive. A suitable definition of the Rayleigh number is 
then 

As before we suppose that the fluid is unbounded in all directions. The general form 
of the disturbance is given by (2.10), and the governing differential equation (2.11) 
becomes 
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The standard eigenvalue methods for equations with constant coefficients are not 
applicable, but we can exploit the expectation that there are solutions for which W 
is a periodic function of z with period 2 n / ~  and use solution techniques like those 
applicable to Mathieu's equation. We write 

m m 

W(z)  = C F,sinn~z+ C G, C O S ~ K Z ,  
12-1 n-Q 

(5.3) 

then substitute in (5.2), convert all terms in (5.2) to Fourier series, and equate 
coefficients. The odd and even functions of z in (5.3) are not coupled, and so we may 
consider them separately, taking the odd sine series first. Note that, as the origin of 
z has been chosen, p1 is an odd function of z. 

5.1. Disturbance modes with W odd in z 

The odd part of equation (5.2) is 

m m x L,F,sinn~z = $U'K~R x F,{sin(n-l)~z+sin(n+l)m}, 
n-1 n-1 

where (5.4) 

and equating coefficients of sin nKz gives 

L,F, = ~a2~4R(Fn-l+F,+l) (n  = 1,2, ...), (5.5) 

in which FQ = 0. We note that L, increases rapidly with n, which suggests that F, 
decreases rapidly and that an approximate solution of this three-term recurrence 
relation may be obtained by truncating the Fourier series for W(z) .  

In the extreme case in which we put F, = 0 for n > 2, (5.5) reduces to the two 
equations 

and the existence of a non-zero solution for Fl and F, requires 

L, Fl = ~ u ~ K ~ R F , ,  L, F, = ! ~ ' K ~ R F , ,  (5.6) 

$ ~ ' K ~ R  = (L1L2);. (5.7) 

If instead we put F, = 0 for n > 3, we find that the right-hand side of (5.7) is 
multiplied by the factor L!/(L,+L,);, which is not very different from unity. The 
next approximation, obtained by putting F, = 0 for n > 4, gives 

(5.8) 

of which there are now two roots for R. Since L, L, is small compared with L, L,, the 
t w o  roots are approximately 

($a2K2R)4 - (L,L, +LlL4 +L,L,) ($%2K4R)2 +L, L,L, L, = 0, 

~u 'K~R = (L,L,);, $a2~4R = (L,L,);, (5.9) 

which repeats the earlier estimate of the smaller root. Truncation at  larger values of 
n similarly confirms estimates of the smaller roots and adds new larger roots. 

Setting F, = 0 for n larger than some small integer, as above, has the advantage 
of giving simple explicit approximate formulae. Our numerical results, however, are 
all obtained from truncations after n = 10 and machine calculations by standard 
methods, and can be considered to be 'exact'. As it  turns out, the approximate 
formulae are very accurate quantitatively. 
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FIGURE 2 .  Rayleigh number as a function of the horizontal wavenumber a for either odd or even 
modes of' a neutral disturbance to  stationary fluid with density varying sinusoidally with respect 
to  2. 

Each solution of t,he characteristic equation represents a relation between the 
dimensionless quantities 

For a neutral disturbance ( y  = 0 ) ,  the dependence on v / D  disappears and (5.9) 
reduces to  

(5.10) 
( K 2  +01')1(4K2+62)% ( 9 ~ ~ + a ~ ) % ( 1 6 ~ ~ + a ~ ) !  H =  . R =  

i a 2 K 4  aU2K4 

Figure 2 shows 12 as a function of a / K  for the first of these two odd modes of 
disturbance. The minimum value of R for this mode is 62.9 and occurs a t  
L X / K  = 0.963, these values being given accurately by the first member of (5.10). 
The minimum values of R for higher-order odd modes are much larger. 

Calculation of the first few Fourier coefficients (F,) shows that  the neutral first odd 
mode of disturbance with minimum R is an  approximately square-sectioned roll 
cell with nested closed streamlines between the boundaries KZ = pn, ( p +  1 )  R and 
0 . 9 6 3 ~ ~  = qn, (q+ 1 )  R where p and q are integers, as shown in figure 3 ( a ) .  Note 
that  the streamlines are not exactly symmetrical about the centre of a cell. The 
vertical component of fluid velocity is larger in magnitude at a value of z at which 
dpJdz > 0 than it is at the corresponding position where dp,/dz is negative with 
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(a) (b) 
FIQURE 3. Streamlines of neutral disturbances at the minimum of R with respect t o  a. ( a )  The first 
odd mode; ( b )  the second even mode. The increments in the stream function between two adjoining 
continuous curves are equal. The dotted curves in ( b )  are arbitrarily chosen intermediate 
streamlines. 

the same magnitude. This and other numerical details are consistent with the 
interpretation of the roll cells as being driven by the overturning of the statically 
unstable fluid in every alternate half-wavelength. 

We saw in $3  that, when dp,/dz is constant, the value of dp,/dz a t  which a neutral 
disturbance sinusoidal with respect to both x and z can exist in unbounded fluid is 
given by 

9 dP1- - (5.11) 
K ~ D v ~ ,  dz ~~a~ ' 

whereas when dp,/dz a cos KZ a neutral odd-mode disturbance of lowest order exists 
at 

( K 2 + 0 1 2 ) 3  ~- 

(5.12) 

The minimum value of the expression (5.11) for fixed K occurs at O I / K  = 0.71 and is 
6.8, whereas that of (5.12) occurs a t  a / K  = 0.96 and is 63, the latter critical density 
gradient being larger because in the case of the sinusoidal density profile some parts 
of the fluid have no tendency to overturn in a square cell. 

5.2. Disturbance modes with W even in z 

When the series of cosine terms in (5.3) is substituted for W(z)  in (5.2) we get 
00 m 

2 L,G,cosn~x =$cz'K~R 2 G,{cos(n-1) kz+cos(n+l )~z} ,  (5.13) 
n=o n=o 
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1 (5.14) 
Lo Go = $U~K~RG,,  

L,  G, = iu2~4R(Gn-1 + G,,,) 

L,  G ,  = $x2~4R(2G0 + G,) 

and ( n  = 2 , 3 ,  . . .). 1 
On truncating the Fourier series a t  various small values of n in the same way we find 
for the first and second even modes of lowest order 

respectively. The corresponding relations bctween R and a / K  for a neutral 
disturbance are then 

(4K2 + a,)$( 9K2 + 
(5.16) 

and the exact values are shown graphically in figure 2 .  The minimum value of R for 
the second even mode occurs a t  a / K  = 1.70 and is 510, which is considerably larger 
than the minimum value of R for the first odd mode of disturbance. This second even 
mode also has a cellular form, as shown in figure 3 ( b ) .  

The first even neutral mode, however, has the surprising property of not possessing 
a non-zero minimum of R. The first of the relations (5.16) has the asymptotic form 
R - 2 / 2 a / ~  (indicated by the broken line in figure 2 )  as a/K+O. It appears that, 
however small the Rayleigh number may be, a neutral even mode of disturbance can 
be found by choosing a sufficiently small horizontal wavenumber. The first of the 
relations (5.15) shows that the rate of growth of the first even mode of disturbance 
a t  prescribed values of R, a / K  and v/D is given approximately by 

2/2a(K2 + 01'); 
R =  , R =  

K4 i a Z K 4  

For the particular case v/D = 1, this equation can be solved explicitly for y :  

(5.17) 

(5.18) 

the corresponding exact values being shown graphically in figure 4 ( a ) .  The shape of 
the curves relating y and a is qualitatively similar at other values of v/D, as shown 
in figure 4 ( b ) .  For any R > 0 there is a range of values of a / K  bounded by a / K  = 0 for 
which y > 0. A sinusoidal density profile is evidently always unstable. 

The above theory suggests that if a sinusoidal distribution of density is suddenly 
set up in stationary fluid by some means, the disturbance that emerges by the 
familiar process of differential growth is that for which y is a maximum with respect 
to a a t  the given value of R, and so is characterized by points lying on the broken 
curve in figure 4(a).  

5.3. The jirst even mode: a global type of instability 
The result that disturbances of large horizontal wavelength become unstable as soon 
as the Rayleigh number is made non-zero is unusual for cases of stationary stratified 
fluid, and we shall therefore examine the nature of the disturbatnce motion to see the 
mechanism of the instability. 

It may be shown readily that for a neutral disturbance with sinall horizontal 
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FIGURE 4. The non-dimensional growth rate y / (uD)hz  as a function of a / K ,  (a )  for various values 
of R when u/D = 1, and ( b )  for various values of u/D when R = 8 ;  first even mode. The broken curve 
in ( a )  passes through the maxima of the solid curves. 



370 G .  K .  Batchelor and J .  M .  Nitsche 

n .  
K 
_ .  

z 

z 

.1' n 

a / K  = 0.5 

U / K  = 0.2 

FIGURE 5.  Streamlines of a neutral disturbance in the first even mode, with a / K  = 1, 0.5, 0.2. The 
streamline pattern is periodic in z and z with periods x /a  and 2 n / ~  respectively. The increments in 
the stream function between two adjoining continuous curves are equal. The broken curve in each 
diagram is the boundary of the region of closed streamlines. The dotted curve for the case 
a / K  = 0.2 is an arbitrarily chosen closed streamline. 

wavenumber the Fourier coefficients G, given by (5.14) with the first relation in 
(5.16) have rapidly diminishing magnitudes ; specifically 

-- G, - 4 2 a 3  -=OF) G, (n  2 2 ) .  
Go (~ '+a'): '  Go 

Thus the approximations to the horizontal and vertical components of velocity 
correct to O ( O ~ ~ / K ~ )  are 

) (5.19) u = 4 2 G  -sinaxsinKz, a' . w = G , C O S ~ ~ ( ~ + ~ C O S K Z  , 
O K' K 3  

showing that the velocity vector is nearly vertical everywhere. This is likewise 
evident from the streamlines of a neutral disturbance within the region K ~ Z ]  < x ,  



Instability of unbounded stratijied Jluid 37 1 

I Accumulation of light fluid reinforces I Accumulation of heavy fluid reinforces I I up-current in this column I down-current in this column I 
I I 

I I I 
I I I 
I I I 
I I I 

I i 
4- - 
H- I T <- Light - 
<- - - Heavy - A 

Light -A 
Heavy - # 

I 

I -Ji. 
I 

I I I 
I I I 
I I I 
I I I 

I 
I- -1 

I x/a I n/a 
I I I 

FIGURE 6. Sketch showing the vertical and horizontal components of velocity in a neutral first even 
global-mode disturbance to a sinusoidal density distribution ; U / K  = 0.1. The velocity distribution 
is periodic in x and z with periods 2x/u and ~ X I K  respectively. 

0 < ax < R shown in figure 5 for the cases a / K  = 1,0.5,0.2. We see also that since the 
slope of a material surface which is horizontal in the undisturbed state has the sign 
of awlax, that is, of -sin ax, the sign of the small horizontal component of velocity 
corresponds to a motion of a layer of denser fluid (pl > 0) down the slope and a 
motion of a layer of less dense fluid up the slope. Figure 6 shows these differential 
sliding motions of the tilted layers of fluid schematically for a neutral disturbance 
with a / K  = 0.1. There is a tendency for heavy fluid to accumulate in the troughs of 
the wavy disturbance with a corresponding depletion of light fluid, and vice versa in 
the crests of the wave; and in the case of a neutral disturbance this tendency is 
balanced by the restoring effect of diffusion and the restraining effect of viscosity. 

Now that we have the picture provided by figure 6, it  is plausible and natural that 
a wavy disturbance of long horizontal wavelength which tilts the layers of stratified 
fluid to the horizontal should generate a relative sliding motion due to  gravity which 
tends to separate the light and heavy fluid into different vertical compartments of 
width K l a  and so to  reinforce the initial disturbance motion. This instability 
mechanism is global in character, in contrast to  the local type of instability which 
generates an overturning motion in roll cells with dimensions comparable with the 
vertical thickness of the layer of fluid in which dpJdx is positive. A homely 
illustration of the mechanism is provided by a large shallow tray which is filled with 
water to a depth of a centimetre or two. It is difficult to pick up the tray without 
spilling the water because the slightest tilt to the horizontal causes the water to  flow 
to the lowest point of the tray, where the accumulation of water depresses that end 
of the tray even more. 

It seems likely that, as in the case of Rayleigh-Taylor instability of a horizontal 
interface across which there is a density jump, in the nonlinear phase of development 
of the growing disturbance there is an approach to a state in which falling heavy fluid 
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and rising light fluid occupy adjoining vertical columns or fingers of width x la ,  the 
value of a being that for which the growth rate of a small disturbance is a maximum 
a t  the given value of R. There may not be an asymptotic steady state, however, 
because diffusion in the horizontal direction gradually eliminates the density 
variations. 

It will be recalled that a t  the beginning of this section we anticipated the existence 
of solutions of the governing equation (5 .2)  for which W(z)  is periodic in z with period 
2 x 1 ~  like the undisturbed density distribution. Floquet theory for ordinary 
differential equations with periodic coefficients (Ince 1944) suggests the further 
possibility of solutions which are periodic in z with period 2 n i V / ~ ,  where N is an 
integer and N = 1 for the ‘synchronous’ disturbance examined above. We have 
examined the first two even-mode ‘subharmonic’ disturbances (for which N = 2 ,  3 )  
by the above method, and find that, although they are unstable, the Rayleigh 
number for a neutral disturbance does not vanish with a / K  and is larger than that 
for a synchronous disturbance with the same (small) value of a / K .  

However, new cases in which N 9 1 prove to be interesting. Since the vertical 
period of the disturbance is here large compared with the period 2 x / ~ ,  the 
disturbance velocity W(z)  is likely to be approximately uniform over one period of 
the undisturbed density profile, thereby reproducing the conditions for the global 
tilting-sliding mechanism sketched in figure 6. We do in fact find by the method used 
above that, when N is equal to the large ratio K / a ,  the Rayleigh number for a neutral 
disturbance asymptotes to 4 a / ~  as a / K - t O .  The disturbance motion here occupies a 
large rectangular cell with both linear dimensions of order 2x/u ,  and the vertical 
component of the disturbance velocity is consequently weak over some parts of the 
cell. An even more unstable disturbance is therefore obtained by choosing 

N D K / a  % 1, (5.20) 

because now the disturbance cell is much larger in the vertical than in the horizontal 
direction and the tilting of the layers of heavier and lighter fluid is exactly as found 
for the first even synchronous mode when a / K  4 1 (see figures 5 and 6 ) .  Again we 
have confirmed this analytically, and find d 2 a / ~  for the Rayleigh number of a 
neutral disturbance satisfying the conditions (5.20). For any large values of N and of 
K / a  we obtain the expression 

(5 .21)  

for the Rayleigh number of a neutral disturbance. 
In  summary, all subharmonics, whether even or odd, have a cellular structure 

because the first term in the Fourier series representing W ( z )  is not constant. The 
ratio of the vertical to  horizontal dimensions of the cell is N a / K ,  and only when 
this ratio is large can the global tilting-sliding mechanism operate effectively. As 
N a / K +  co, and provided a / K  < 1, the relation between y / ( v D ) + ,  R, v / D  and a / K ,  

for both even- and odd-mode subharmonics, tends to that  already found for the 
first even-mode synchronous disturbance, which remains the most unstable type. 

6. Fluid with zero density gradient outside a central layer 
The analysis of the preceding section for a sinusoidal undisturbed density variation 

led to the identification of a global type of instability characterized by the feature 
that the Rayleigh number for neutral stability tends to zero as the horizontal 
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FIGURE 7. Types of density stratification with zero gradient outside a central layer of 
thickness 1. 

wavelength becomes large. Now that the basic mechanism for the instability has 
been explained, it is worthwhile to enquire whether there are other density profiles 
for which similar instabilities exist. 

The results for a sinusoidal density profile suggest consideration of fluid with non- 
uniform density in a single central horizontal layer, since here too heavy or light fluid 
would slide laterally when the layer is tilted. Figure 7 shows schematically three 
types of undisturbed density stratification which may conveniently be considered 
together. These three are (1) a layer of transition from light fluid below to heavy fluid 
above, (2,2’) an isolated layer of heavy or light fluid, and (3,3’) a heavy and a light 
sub-layer one on top of the other. Here, ‘ heavy ’ and ‘light ’ mean relative to  the base 
density po. I n  each of these three cases a layer with thickness of 0(1) in which the 
density is non-uniform is sandwiched between two semi-infinite expanses of fluid in 
which the density gradient tends rapidly to  zero. Our three cases differ significantly 
from density profiles studied previously within the context of penetrative convection 
($4) inasmuch as the fluid is not statically stable outside the central layer. As a 
consequence, we shall again find that the fluid is unstable to disturbances with long 
horizontal wavelengths a t  small values of the Rayleigh number. In  case (l), which is 
the Rayleigh-Taylor type of instability with effects of buoyancy diffusion included, 
the disturbances do not exhibit the novel tangential sliding of fluid layers that  we 
found for a sinusoidal density profile, but we include consideration of case (1) in view 
of its close mathematical connection with cases (2) and (3). 

6.1. Asymptotic analysis for a1 -4 1 

Our starting point is equation (2.11). Fourier transformation of both sides yields the 
following expression for the transform of W(z)  : 

W ( w )  = 9 [W(z)] = 
sa2/(vD) 

(w2 + a2 + y / D )  (d + a2 + y/v) (d + a2) -m po dz 
I * W(z)  eiwp dz. 
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I n  general, (6.1) leads via the convolution theorem to an integral equation for @(w)  
which seems not to be simpler than the original differential equation (2.11). However, 
we are interested primarily in the asymptotic behaviour of W when a1 < 1 ,  and an 
approximate approach starting directly from (6.1) enables us to identify - without 
having to  assume any specific functional forms for p1 ~ the key parameters of the 
three types of density profile that determine their stability properties. Since the 
undisturbed density gradient dpl/dz goes to  zero outside the central layer, the value 
of the integral in (6.1) is determined approximately by the behaviour of W(z)  near 
z = 0. We therefore form a Taylor expansion of W(z)  exp (iwz) about z = 0, and 
evaluate this integral as 

where 

1*W(z)e iw2dz=  C M ,  =[ d”(Weiw2) dzn ] , 

-w Po dz n=o 2-0 

1 dp 
M ,  = I-, zn 2 dz. 

The formal expansion procedure is predicated upon the expectation that the vertical 
component of velocity varies slowly over the central layer when a1 < 1, this being 
suggested by experience with the sinusoidal case, where the velocity for the global 
mode a t  long horizontal wavelengths varied very little with z despite periodic 
variations in dpl/dz. 

Equations (6.1) and (6.2) together give rise to functions of w having the form 

(iw), 
f’,(w) = (w2+ a2+ y / D )  (w2+ a2+ y l v )  (w2+ 0 1 2 ) .  

Inversion requires use of the following identity, derivable by contour integration 
techniques : 

where 

and P is the Prandtl number v / D .  (Contrary to appearances the expression (6.4) is 
not singular a t  P = 1 nor a t  y = 0.) We note for future use that for a neutral 
disturbance ( y  = 0 ) ,  (6.4) assumes the limiting form 

(6.5) 
( 1 ) w - 5  [(k - 1) (k - 3) T (2k - 3) a2 + (az)’] eTu ( z  >< 0). 

16 f k k )  = 

In  terms of the functionsf, given by (6.4), the inversion of (6.1) leads to 

+Lfi2[W”(0)f0+2W’(0)  f l+W(0)f2]+ .  ..>, (6.6) 

where the prime denotes differentiation with respect to z. Equation (6.6) specifies 
W(z)  in terms of the values of W and its derivatives a t  z = 0, moments of the 
undisturbed density gradient dpl/dz, and the known functions f , ( z ) .  As is evident 
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from (6.4), the f,(z) generally decay exponentially on the spatial scales a-l, (aal)-' 
and (acrz)-l. Consistency of the asymptotic analysis requires that all these lengths be 
much larger than the thickness of the central layer. Thus, in addition to a1 + 1,  
further a posteriori conditions for validity of the approximate approach are y 4 v/12 
and y 4 D / P .  The latter two inequalities require the timescale of growth to  be much 
larger than the times for momentum and buoyancy diffusion over a distance equal 
to the central layer thickness. It may be deduced from subsequent results that  a 
sufficient condition for satisfaction of all three inequalities is smallness of the 
Rayleigh number based on the layer thickness. 

It may be noted in passing that, although we are ignoring possible effects of time 
evolution of the base density profile po+pl due to diffusion, our asymptotic analysis 
indicates that  such temporal changes have no effect to  leading order a t  large 
horizontal wavelengths. A conserved quantity governed by the diffusion equation 
evolves in such a way that the moments Mo and M ,  of the spatial gradient are 
constant, and so too is M ,  when Mo = O .  The growth rate y is determined 
asymptotically by po+pl only through its dependence upon these moments (in a 
manner to be detailed below), all of which are unaffected by diffusive spreading of the 
base profile. The only restriction is that  the time be not so long that the broadening 
central layer ceases to  be thin compared with the horizontal wavelength. 

Case (1)  : a transition between two diflerent densities 
The zeroth-order moment (see (6.3)) specifies the fractional change in density : 

At the lowest order of approximation, equation (6.6) gives for W(z)  the expression 

W ( z )  - W ( 0 )  fo(z). vD 

The validity of this expression for W ( z )  at z = 0 requires that 

(6.7) 

For the special case of a neutrally stable disturbance (see (6.5)) these expressions 
become 

g 1 3 ~ 0  16 
R = -  - - ( 4 3  VD 3 

The flow field given by (6.10) is illustrated in figure 8(a ) ,  and consists of rolls which 
decay exponentially with z on the scale a-l. The essentially vertical flow near z = 0 
is like that for the sinusoidal case. Likewise the Rayleigh number for neutral stability 
tends to zero as ul+ 0, although now with the third (not the first) power of al. It is 
understandable that the damping effects of viscous stresses and diffusion should be 
more important for interleaved layers of heavy and light fluid than for a configuration 
where the heavy fluid is separated from the light fluid. We shall see in 87 that the 
growth rate y is proportional to the same power of a in the sinusoidal case and in 
case (1) when diffusion and viscous effects are absent. 
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FIQURE 8. Streamlines for the limiting form of the neutral disturbance as aZb0. (a) Case (1); (b) 
case (2) ;  (c) case (3), even mode; (d) case (3), odd mode; (e) case (3'). The increments in the stream 
function between two adjoining continuous curves are equal. The broken curve in (c) is the 
boundary of two inner regions of closed streamlines, and the dotted curves are arbitrarily chosen 
intermediate streamlines. 

Equation (6.6) makes it clear that the asymptotic relations (6.7)-(6.10) derive 
purely from the existence of a density difference. Details of the transition from light 
to heavy fluid do not enter a t  lowest order, provided only that the horizontal 
wavelength is much larger than the thickness of this central layer. The succeeding 
terms in (6.6) represent higher-order corrections to the leading asymptotic behaviour, 
and are affected by the specific form of the undisturbed density gradient through 
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FIGURE 9. Growth rate y as a function of the horizontal wavenumber a for density variations of 
type ( 1 )  in the limit as ul-t 0. In this limit the central layer is characterized solely by the fractional 
density difference M,, here equal to 0.1 for all the curves. 

their dependence upon its higher moments, as will be demonstrated later. If p1 is not 
an odd function of z (e.g. whenM, + 0) ,  then higher-order corrections will cause small 
deviations from the symmetry of the leading-order flow about the central plane 
z = 0. It is worth noting that, at lowest order, the density gradient dp,/dz acts as a 
Dirac delta function in (6.1), picking out the value of W(z)  exp (iwz) at z = 0. 

When olZ 4 1 the central layer looks infinitesimally thin on the scale a-l of spatial 
variations in the disturbance flow, and case (1)  is then a body of heavy fluid lying 
above a body of light fluid separated from it by an interface. This situation was 
addressed by Taylor (1950) for the case of inviscid flow with surface tension a t  the 
interface, and his work was later extended by others (Bellman & Pennington 1954; 
see also Chandrasekhar 1961) to  include the effects of fluid viscosity with or without 
interfacial tension. Our analysis makes a small new contribution to this classical 
problem inasmuch as our results show the effect of the diffusion of buoyancy on a 
disturbance in the absence of interfacial tension. Figure 9 shows the dependence of 
the growth rate y ,  calculated numerically from (6.8) and (6.4), on the horizontal 
wavenumber a for a fixed value of the fractional density difference No and various 
values of v/D.  Here we have used the characteristic length (v2 /g) :  and the kinematic 
viscosity v to make y and a dimensionless, as in Chandrasekhar (1961). The limiting 
functional relation as v/D-+oo is numerically identical with that given by 
Chandrasekhar for the case where the fluid has viscosity but no surface tension and 
no diffusion of buoyancy. The curves corresponding to different values of v/D 
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indicate that diffusion of buoyancy inhibits the growth of disturbances and makes 
possible a condition of neutral stability. In  this respect diffusion has the same 
additional effect as surface tension, although the operative physical mechanisms are 
quite different. For an interface with surface tension, the neutral disturbance 
corresponds to stationary fluid and a deformation of the interface which prevents the 
further release of potential energy by fingering of heavy fluid down into light fluid 
and vice versa. In our situation the neutrally stable disturbance involves a steady 
flow, and the ‘interface ’ (central transition layer) remains stationary because the 
density now diffuses relative to  the fluid and fluid may pass through the ‘interface’ 
without carrying it along. 

All the curves in figure 9 have the asymptotic behaviour y2 - $pM0 as a becomes 
small. This is the relation derived by Taylor (1950) for the inviscid (and non- 
diffusive) case. 

Case (2) : a layer of either heavy or light jluid 
Here the values of the undisturbed density far above and below the central layer 

are identical, whence the first term on the right-hand side of (6.6) vanishes. The value 
of 

m 

representing the excess mass per unit area of the layer divided by po, now determines 
at leading order whether the stratified fluid is dynamically stable. Equation (6.6) 
specifies W(z) in terms of the values of W and W’ a t  z = 0, and leads to two linear 
equations in the variables W(0) and W‘(0) which determine M ,  in terms of 01 and y 
(and P )  as an eigenvalue: 

9”21M,I - { f O ( O )  f > ( O ) } + .  
VD 

This expression is applicable for either sign of M,. 
For a neutrally stable disturbance, we have 

The corresponding flow for case (2), given by 

(6.11) 

(6.12) 

(6.13) 

is now asymmetric, the rolls having centres at az z -0.941, as shown in figure 8 ( b ) .  
The flow field for case (2’) is the same except reflected in the plane a t  z = 0. As before, 
the details of the density distribution in the central layer are of no consequence to 
the leading asymptotic behaviour of the global mode, which now depends only upon 
the moment M,. At lowest order, the density gradient dp,/dz is effectively the 
derivative s’ of a Dirac delta function, picking out the derivative of Wexp(ioz) a t  
z = 0 in (6.1). 

Figure 10(a) shows the dependence of the growth rate y upon the horizontal 
wavenumber a for fixed values ofM, (such that a1 < 1 )  and v /D = 1. As in case ( l ) ,  
these curves derived from (6.11) and (6.4) correspond to the central layer acting as 
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FIGURE 10. Growth rate y as a function of the horizontal wavenumber a, in the limit a1 + O ,  (a)  for 
density variations of type (2) characterized by the parameter M,(g/v2) : ,  and (q)  for types (3), 
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for type (3), odd mode, are quantitatively very similar to those for the even mode. 
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an infinitesimally thin interface, now characterized by the parameter M I .  It can be 
shown from (6.11) and (6.4) that, for each curve, y becomes proportional to rn: as 
a+0. This power law cannot be expressed in terms of non-dimensional variables 
without involving v and D .  Thus, the behaviour of the curves very near the origin 
does not describe the inviscid and non-diffusive limit, unlike the Rayleigh-Taylor 
instability (case 1) .  We take up the inviscid, non-diffusive limit via a different type 
of analysis in 9 7 .  

Case (3) : a layer containing heavy and light fluid equally 
Density stratifications of type (3) are ones for which the density approaches the 

same value above and below the central layer, and for which this layer possesses zero 
net excess mass. The first two terms on the right-hand sidc of (6.6) thus vanish. Thc 
integral 

m 

-@f2=J z f i d z ,  
-m Po 

representing the first moment of interfacial excess mass per unit area divided by pa, 
now determines the dynamic stability of the stratified fluid. Equation (6.6) leads to 
a homogeneous system of three linear equations in the quantities W(O),  W(0) and 
W " ( O ) ,  for which the moment M ,  represents an eigenvalue. Straightforward 
calculations lead to  the expressions 

where the first two refer to case (3), for which M ,  > 0 (i.e. light fluid above the heavy 
fluid), and the last refers to case (3'), for which M ,  < 0 (i.e. light fluid below the heavy 
fluid). 

For a state of neutral stability, the two modes for case (3) lead to the same 
asymptotic dependence of the Rayleigh number on the horizontal wavenumber, viz. 

(6.15) 

The corresponding flows, given by 

W(x) - W ( O ) { l + ~ a ~ ~ + ( a z ) ~ } e ~ ~ ~ ~ ~ ,  W ( z )  - W'(0)z(l+lazl)e-lazi, (6.16) 

are illustrated in figure 8 ( c  and d ) .  
The first mode is even and corresponds to the global instability mechanism 

described above, with the difference in detail that there are now separate cells above 
and below that merge into peanut-shaped rolls. The second mode is odd and shows 
a new type of global instability that operates by a mechanism entirely different from 
the tilting-sliding process characterizing the disturbances discussed previously. The 
new mechanism can be understood by examining the streamline pattern in figure 8 ( d ) .  
On the scale of the diagram, the central layer is infinitesimally thin and coincident 
with the horizontal x-axis. The flow strips off light fluid from the upper part of the 
central layer, just  above the axis, and carries it a t  first horizontally and later 
upwards, and likewise strips off the heavy fluid just below the axis and carries it 
downwards. In this mechanism there is no tendency for the central layer to deform. 
Instead, potential energy is released in the half-spaces z 2 0 separately. 
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Neutral stability for case (3’), for which M ,  is negative, is characterized by 

(6.17) 

As shown in figure 8 ( d ) ,  the disturbance flow, 

W(z) - W(0) (1 + 101.~1) e-lnzl, (6.18) 

is qualitatively the same as in case (1) and corresponds to  the tilting-sliding 
mechanism. 

The flows for cases (3) and (3’) correspond to  a fs” distribution for dp,/dz. The 
Rayleigh number for neutral stability goes to zero with the first power of ct, as in the 
sinusoidal case. For the even modes this is not surprising, since the density 
stratifications of types (3) and (3‘) each contain one heavy and one light layer and 
therefore comprise an isolated period of the sinusoidal profile. The stripping 
mechanism represented by the odd mode is evidently as efficient in releasing 
potential energy as the tilting-sliding mechanism. 

Figure 10(b)  shows the functional dependence of the growth rate y on the 
horizontal wavenumber 01 for the case (3) even modes, for fixed values of M2 and 
v / D  = 1, determined numerically from (6.14) and (6.4). As in case (2), the behaviour 
of the curves very near the origin, where y is now proportional to a:, does not describe 
the inviscid, non-diffusive limit. 

The fact that the preceding asymptotic formulae give Was a function involving IzI 
indicates the existence of a singularity buried within our approximate scheme. Direct 
computation for case ( 1 )  shows that Wand its first four derivatives, as given by (6.7) 
or (6.10), are continuous at z = 0, but that d5W/dz5 suffers a jump. I n  cases (2) and 
(3),  d4W/dz4 and d3W/dz3 respectively suffer jumps. These observations, which are 
consistent with the interpretations of the density gradients dp,/dz in terms of the 
delta function, indicate that corrections to the leading asymptotic behaviour of W(z) 
begin, a t  a certain order, to exhibit structure on the small spatial scale of the central 
layer thickness 1. This is as it was in the sinusoidal case (cf. equation (5.19)), where 
the leading term for W(z) was independent of z, but the first correction term was 
periodic with period ~ x / K .  Thus, the regular expansion procedure embodied in (6.2) 
cannot be carried out to arbitrarily many terms. Equation (6.2) should be regarded 
as a finite sum, where we terminate the Taylor expansion with a remainder after the 
last term for which the derivatives of W involved are continuous. 

Appreciable thickness of the central layer 
The preceding leading-order asymptotic formulae apply when the thickness of the 

central layer is negligible in comparison with the horizontal wavelength. Thus, 1 does 
not appear explicitly, and, as is evident from the dimensionless relations in figure 10, 
is present only in the interface parameters M ,  and M,. It is of interest to improve the 
approximation scheme by calculating corrections to the leading behaviour, and 
thereby to ascertain the dynamical consequences of finite 1. Here we focus upon 
neutral disturbances for illustrative purposes. 

In  order to derive a refined approximation for the Rayleigh number R in case (l) ,  
we retain all the displayed terms on the right-hand side of (6.6), and substitute for 
R the following expansion in powers of a1 : 

R - 9(01l)~[l +r , (a l )+r , (011)~] ,  
13-2 
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in which the values of the coefficients rl and r2 are to  be determined. We similarly 
introduce 

W(0) - w;+ w; az, V ( 0 )  - W;l, 

where Wh, W; ,  Wg are coefficients and the lowest-order terms are already known 
from (6.10). Upon collecting terms multiplied by like powers of aZ, (6.6) becomes 

(6.19) 

where Ml and M ,  are now defined solely by (6.3) (since the moments of pl /po do not 
exist when M, + 0 )  and we have put Fk(z) = a5-’Cfk(z) for brevity. It is evident from 
(6.3) that the ratios M1/Mo Z and M,/Mo Z2 represent O( 1 )  numbers. Validity of (6.19) 
at  z = 0 confirms the leading behaviour (6.9) and requires that the coefficients 
multiplying aZ and ( ~ 1 ) ~  vanish. This leads to the conclusion that r ,  = 0, and gives an 
expression for r,  in terms of various quantities, all of which are known except for W;.  
The latter is found by differentiating (6.19) with respect to z. In  this way, i t  can 
be shown that the Rayleigh number for case (1) possesses the asymptotic behaviour 

(a02 M ,  R - ?(aZ)3  1+- -- - { 3 [MoZ2 (:ZY]]* 
(6.20) 

It is seen from (6.20) that non-zero values of M ,  of either sign decrease the 
Rayleigh number for neutral stability. This is expected, because non-zero M ,  is the 
cause of instability in cases (2) and (2’), and so here represents a destabilizing factor, 
albeit weaker than the dominant density jump. 

For a density variation that is odd in z ,  like either of the two curves in figure 7 (a ) ,  
M ,  = 0. If the density increases monotonically with z (as illustrated by the 
continuous curve), then M ,  > 0,  implying that increase of the thickness of a central 
layer in which there is a simple smooth transition between the two different densities 
a t  IzI + 00 has a stabilizing influence, as is generally to be expected. On the other hand 
M ,  < 0 for profiles like the dotted curve in figure 7 ( a ) ,  and here there is a 
destabilizing influence. This is essentially because the differential sliding motions of 
the different parts of the central layer go with the bulk motion of the two semi-infinite 
regions when M ,  < 0 whereas when M ,  > 0 they go against them. 

Similar arguments yield for case ( 2 )  

(6.21) 

when p1 is an even function of z, so that, in particular, M 2  = 0. For each of the two 
density distributions shown in figure 7 (b ) ,  M ,  and M3 have the same sign and non- 
zero values of 1 again have a stabilizing influence. 

The leading-order approximations (6.15) and (6.17) for cases (3) and (3’) cannot be 
improved by the present regular expansion scheme, because calculation of the first 
correction term would involve derivatives of W possessing singular behaviour, as 
observed above. 
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6.2. Some exact results for special density profiles of types (2) and (3) 
The preceding asymptotic analysis for long wavelengths and small growth rates has 
established forms of global disturbance to which the various stratifications are highly 
unstable, and i t  has shown that a t  various orders in a1 these disturbances are 
governed asymptotically only by certain moments of the undisturbed density 
gradient. For arbitrary values of the parameters the stability properties will of 
course be influenced by the precise nature of the density stratification, and it would 
be useful to have some more general results, not restricted to small values of 01 and 
7 ,  for representative profiles. In the present subsection we consider density 
distributions in cases (2) and (3) such that p, is piecewise constant, for which (2.11) 
can be solved exactly. Although such profiles would be difficult to realize in practice, 
they have the mathematical advantage of furnishing explicit expressions with which 
the predictions of the asymptotic analysis can be compared. 

A piecewise-constant density profile of type (2) or (2') is 

with M, = -2A1. The corresponding gradient is given by 

2.93 = M, [S(z- 1) - S(z + l)]. 
po dz 21 

(6.22) 

Substitution into (6.1), use of the special properties of S(z) and subsequent inversion 
gives 

where we have used the identity F - - ' [ f o ( w )  exp (iwc)] =fo(z-c) with c = f Z. Validity 
of this expression for W(z)  at  z = f l  leads to two homogeneous linear equations in 
W(1) and W( -Z) which determine MI as an eigenvalue, thereby yielding the exact 
formula 

~- g012)M,I - 2Z{[f0(O)]2- [fo(2l)]2}-k 
VD 

(6.23) 

It is worth noting that the formalism embodied in the functionsf&) represents a 
very efficient way of arriving at (6.23). The standard approach to this type of 
problem, as exemplified by previous analyses of Rayleigh-Taylor instability, would 
involve expressions for W as linear combinations of the six linearly independent 
solutions of equation (2.11) with zero right-hand side, valid in each z-interval where 
dp,/dz = 0. A disturbance mode that decays to zero as lzl+ 00 would then involve 
three unknown coefficients for each semi-infinite body of fluid, and six for the central 
layer. Determination of M I  would require evaluation of a 12 x 12 determinant 
derived from matching conditions imposed at  the interfaces at z = & 1. Our approach, 
a by-product of the asymptotic analysis, reduces this to a much more manageable 
2 x 2 determinant. 

For the representation 

Po 
( A ,  ' - l < z < O  
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of case (3) ( A  > 0) and (3') ( A  < 0), M ,  is equal to 2A12, and the density gradient 
assumes the form 

dpl - 3 [S(z + I) - 2 4 4  + S(z - l ) ] .  
po dz 21, 

(6.24) 

Manipulations of the same type as before lead to the equations 

The two roots of the quadratic equation correspond to the even modes for cases (3) 
and (3'), and the second equation applies to the odd mode for case (3). 

Equations (6.23) and (6.25) represent exact relations applicable to arbitrary values 
of the parameters. Numerical and algebraic calculations for these examples where p1 
is piecewise constant confirm that the asymptotic analysis correctly predicts the 
limiting dependence of the Rayleigh number upon ul for neutral stability and a1 < 1 
(cf. equations (6.12), (6.15), (6.17) and (6.21)), as well as the limiting functional 
dependence of y upon 01 a t  small Rayleigh numbers (cf. equations (6.11) and (6.14)). 
This serves as a check on the approximate approach. 

6.3. Numerical solution of equation (2.11) for representative density projiles 

As representative density profiles for more detailed numerical study we have selected 
the following forms related to the Gaussian function for cases ( l ) ,  (2) and (3) 
respectively : 

of types (1)-(3) 

where 

= AF(z/Z), AF'(z /Z) ,  AF"(z / l ) ,  
Po 

(6.26) 

(6.27) 

and a prime denotes differentiation with respect to  the argument g = z / l .  These are 
the functional forms drawn in figure 7 .  

A numerical approach necessarily involves some element of truncation, and we 
have elected to introduce stress-free constant-density boundaries a t  planes z = f 9 
far removed from the central layer (cf. Matthews 1988). For sufficiently large 9, the 
Rayleigh number Rb and growth exponent yb calculated for the bounded system 
(distinguished by superscript b) are expected to  be good approximations to the 
corresponding stability properties for the original unbounded system, as dem- 
onstrated by Matthews for his cellular flow patterns. The convergence as 9 +- co will 
be slower here, however, because fluid of constant density above and below is less 
effective a t  suppressing the disturbance than stably stratified fluid and the flow 
decays exponentially on the lengthscale u-l (cf. figure 8). Thus, 9 needs to be large 
compared with the horizontal wavelength in order not to affect global disturbances. 

For given 9, an even disturbance mode W(z)  is expanded in the series (4.2). 
Substitution into (2.1 l ) ,  multiplication through by any one term of the series and 
subsequent integration from 0 to 9 with respect to z leads ultimately to an infinite 
homogeneous system of linear equations of the form 

[hl- (uZ)-4B] w = 0, (6.28) 
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where h = uD/gA13 is the eigenvalue, W = (W,, W2, . . .) is the corresponding vector of 
expansion coefficients, I is the identity matrix and the matrix B is given by 

(6.29) 

and (6.31) 

Substitution of the expressions (6.26) into (6.3) shows that the relation between the 
eigenvalue h and the Rayleigh numbers defined in (6.9), (6.15) and (6.17) is R = A-’ 
in case (l), R = 2h-’ in case (3), and R = -2h-’ in case (3’). For global modes these 
relations involve the largest positive eigenvalue in cases (1) and (3) or the negative 
eigenvalue of largest magnitude in case (3’). Accurate approximate expressions for 
the coefficients (6.31) can be derived using contour integration techniques. Matthews 
(1988) determined the Rayleigh number for neutral stability as the smallest (real, 
positive) zero of the determinant corresponding to a truncation of a system 
equivalent to (6.28). For large matrices, calculation of the determinant (here using 
a linear equation solver) represents a viable approach, as we have checked, but 
probably not the most efficient. We have therefore generally opted to compute values 
of the Rayleigh number from the appropriate eigenvalue of B, the latter being 
determined with the help of EISPACK subroutines (Dongarra & Moler 1984). 

The generation of accurate numerical results requires consideration of two criteria. 
First, one must choose 64 so large that the pertinent eigenvalue of the bounded 
system is close to the actual eigenvalue of the unbounded system. The preceding 
asymptotic analysis indicates that, for neutral disturbances a t  small all W invariably 
decays as ( a ~ ) ~  exp ( - 01%) where N = 1 or 2. Thus, smallness of ( a 9  ) N  exp ( - a64 ) 
ensures that W has decayed more-or-less completely when the free surface is reached ; 
our numerical calculations were performed with a 9  = 10. Second, for given 9 one 
should operate with sufficiently many modes. The first zero of the Mth mode occurs 
at z x 9 / 2 M .  Resolution of structure on the scale 1 would require this quantity to 
be small compared with 1. The calculations indicate that M x 911 is already 
sufficiently large for purposes of calculating the first one or two eigenvalues (in which 
we are primarily interested), corresponding to  the least oscillatory even eigen- 
functions. It is evident that  the numerical approach involves large matrices for 
small values of al, and therefore demands more computational power as ul+O. 
Fortunately, this is precisely the regime where the asymptotic analysis becomes 
accurate. I n  conjunction, the asymptotic and numerical approaches allow quan- 
titative analysis of disturbances a t  arbitrary wavelengths. 

The preceding discussion has been restricted to disturbance flows symmetric about 
the central layer (i.e. even functions of z ) .  We have also encountered odd modes 
(case 3) and asymmetric modes (cases 2, 2’). The same type of numerical technique 
applies provided one utilizes a sine series and, most generally, the series 

m m 

W = Wp)cos[x(k-$)z/9]+ C Wg’sin(xkzI2’). (6.32) 

Separate schemes were devised for these other cases, but the preceding paragraphs 
indicate the nature of the calculations and it is not necessary to present the details. 

k=l  k-1 
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R 

FIGURE 11.  Dependence of the Rayleigh number for neutral stability on the horizontal wavenumber 
a for density variations of types ( l ) ,  (2), (3), (3'). The continuous lines represent values calculated 
for the representative functional forms (6.26) by numerical solution of equation (2.1 1 ) .  Broken lines 
represent the limiting power laws predicted by the asymptotic analysis for a2 + O .  

Figure 11 compares computed values of the Rayleigh number for neutral stability 
with the predictions of equations (6.9), (6.12), (6.15) and (6.17), and shows clearly the 
approach of the 'exact ' values to  the corresponding leading asymptotic behaviour. 
Figure 12 ( a d )  illustrates, for all the cases considered, the computed dependence of 
the growth rate y on the horizontal wavenumber a for fixed values of the pertinent 
Rayleigh number. Although these graphs have the same general appearance as those 
in figures 9 and 10, their significance is different. The curves in figures 9 and 10 refer 
to circumstances in which the central layer is negligibly thin and its thickness does 
not enter explicitly into the computed Rayleigh number or growth rate. Thus, figures 
9 and 10 represent, in different dimensionless variables, an expanded view of figure 
1 2 ( a d )  in the vicinity of the origin, corresponding to small values of the Rayleigh 
number. Figure 12 ( a d )  is not restricted to the universal asymptotic properties of the 
various types of density distribution at small Rayleigh numbers. Rather, it  shows for 
the simple representative density profiles (6.26) the effect of finite layer thickness (al 
not very small). It is seen that appreciable thickness of the central layer reduces the 
growth rate and increases the Rayleigh number for neutral stability relative to  the 
leading-order asymptotic values, and therefore represents a stabilizing factor. This 
conclusion agrees with the qualitative predictions of the higher-order asymptotic 
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FIGURE 12. Growth rate y as a function of the horizontal wavenumber a for density stratification 
of types ( l ) ,  (2), (3) and (3'). Continuous curves represent numerical values for the functional forms 
(6.26). Broken curves in (a), (b), (c) and (d) represent the relations ( 6 4 ,  (6.11), (6.14) and (6.14) 
respectively derived from the leading-order asymptotic analysis valid when al 4 1. The additional 
dotted curves for case (2) correspond to the piecewise-constant density profile (6.22), and those for 
cases (3) and (3') correspond to (6.24). In  every case P = 1. The curves for case (3), odd mode, are 
quantitatively similar to those for the even mode. 

analysis. Comparison of the curves corresponding to the piecewise-constant (dotted 
curves) and Gaussian-derived (continuous curves) density variations shows that 
discontinuities have a destabilizing influence, although appreciable thickness of the 
central layer decreases the growth rate for these two kinds of profile relative to the 
curves given by the asymptotic analysis. 
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7. The energy balance for a disturbance with large horizontal wavelength 
whenv=OandD=O 

For mathematical reasons the analysis in $6 was limited to small values of the 
Reynolds number yZ2/v, a limitation which is not serious in an examination of neutral 
and adjoining disturbances. We consider now the other extreme case in which the 
Reynolds number yZ2/v is large, so that the motion is effectively inviscid and also 
diffusionlesst (assuming D / v  is not too large) everywhere. It is possible to give a 
simple physical description of the disturbance motion under these conditions from 
which values of the growth rate y may easily be derived by considering the balance 
of kinetic and gravitational potential energy. This physical picture is applicable to 
all those undisturbed states that  we have found to be markedly unstable to global 
disturbances which tilt the layers of non-uniform density and cause sliding of the 
fluid within the layers, viz. the case of a sinusoidal density distribution ( $ 5 )  and cases 
in which p1 differs from zero only in a central layer ($6) .  

We note first that when v = 0 and D = 0 the governing equation (2.11) reduces to 
the second-order equation 

(7.1) 

where, as before, the vertical component of velocity of a normal mode has been 
written as 

w = W(z) eyt cos ax (7.2) 

and a is the horizontal wavenumber of the disturbance. The wavelength 2n/a will be 
assumed to be large compared with any length characteristic of the undisturbed 
density distribution, and i t  follows from (7.1) that W is a slowly varying function of 
z on the scale of that length. 

7.1. The case p1 = poA sinm 
We take i t  for granted that here the most unstable disturbance is such that W is 
periodic with respect to z ,  with period ~ ~ c I K ,  and is an even function of z. There is no 
actual need in this case for a new method of analysis because the formulae (5.17) and 
(5.18) are valid for any Rayleigh number and give the growth rate as 

when v = D = 0 and a / K  6 1. The relation between y and a here is the same as for 
Rayleigh-Taylor instability. Moreover there exists an explicit solution of (7 .  l ) ,  now 
the Mathieu equation, which is periodic with period 2 x 1 ~  and for which (7.3) may 
readily be seen to be the characteristic-value equation when a / K  6 1 (Whittaker & 
Watson 1915,g 19.3). However, we shall apply the energy-balance method to the case 
of a sinusoidal density distribution in order to gain more insight into the global 
instability mechanism, and relations like (7.3) will serve as a check on its correctness. 

Consider first the total kinetic energy of the disturbed fluid a t  time t .  The vertical 
component of velocity of the fluid is given by (7.2), in which W(z)  is approximately 
constant, and equal to W, say, when a/. Q 1.  To obtain the horizontal component u 
we construct the equation of motion of a thin material sheet of fluid which in the 

t Note that there is no problem about the assumption of a steady undisturbed state in this case. 
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undisturbed state is planar and horizontal at vertical position z. In  the disturbed state 
the vertical displacement of the sheet at  horizontal position x is 

W 
Y 

7 = Ley t  cos ax, (7.4) 

in conformity with (7.2). The sheet is now locally inclined to the horizontal at a small 
angle aq/&r:, and the fluid of excess density p1 in the sheet slides freely, either down 
if p1 > 0 or up if p1 < 0, with a local velocity q given (after use of the Boussinesq 
approximation) by 

aq a7 
Po- at = -SP1,, 

(7.5) 
U S A  
Y 2  

whence u = - W, eyt sin ax sin KZ 

correct to the first order in disturbance quantities. The kinetic energy of the fluid per 
wavelength 2nIa in the x-direction, per wavelength 2 x 1 ~  in the z-direction, and per 
unit depth in the y-direction, is thus 

!!' = aK r$,,( 1 + A  sin K Z )  (u2 + w2) d s  dz 
4x2 

The other form of energy is gravitational potential energy, which for the same 
body of fluid is increasing at  the rate 

_ -  dP - = r r w ( p , + p ' ) g d x d z .  
dt 4x2 

In the absence of diffusion (2.8) reduces to 

(7.7) 

which may be substituted in (7.7).  Only the density fluctuation contributes to the 
integral with respect to s in (7.7), and we obtain 

Our approximation that W(z)  is constant is too crude here, because it omits the small 
but vital vertical component of velocity due to the sliding of the fluid sheets. A 
better approximation, obtained from (7.5) and the mass-conservation relation 
awpz = -au/ax, is 

When this is substituted in (7.9) we get 
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The energy balance requires that d(T+P)/dt = 0, where T is given by (7.6), 
whence we recover the known expression (7.3) for the growth rate y. It is noteworthy 
that this expression is independent of K .  This results from the fact that every initially 
horizontal fluid sheet is deformed and develops a sliding motion in the same way 
regardless of the vertical distribution of density. 

7.2. The case in which p1 = 0 except in a central layer 

Again we calculate the total kinetic energy and rate of change of potential energy for 
a disturbance whose horizontal wavelength is large compared with the layer 
thickness. In  this case the vertical velocity component is approximately uniform 
within the central layer, and we put W(z)  = W, there. Outside the layer the motion 
is irrotational and the velocity potentials in the regions above and below the layer 
are 

q5 = T - exp (yt F az) cos ax. Wl 
a 

The total kinetic energy of the fluid per unit wavelength in the x-direction and per 
unit length in the y-direction is thus approximately 

1 
2a 

T = -po Wte2yt, (7.10) 

the contribution from the relatively thin central layer being negligible. 
The change in the potential energy on the other hand is dominated by the 

contribution from the central layer. Beginning again with (7 .7)  (but with the 
integration with respect to  z now over all values of z )  and using (7.8) we find 

dP dp nla m 
- = -% w 2 1 d x d z  
dt 2ny dz 

ag 2nla 00 

= -- / /-, w,pl dxdz. 
au 

XY 0 

The sliding velocity of a fluid sheet in the central layer, analogous to 

u=- ""1 W, eyt sin ax, 
Y 2Po 

dp - a2g2 2 2yt - - 3 P o  W1e 
dt Y 

and when the expressions (7.2) and (7.12) are substituted for w and u (7 .  
m 

- 

(7.11) 

7.5), is 

(7.12) 

11) becomes 

(7.13) 

The requirement of zero rate of change of the total energy T+P then gives the 

y4 = a3g2 Sdz,  (7.14) 

valid when a1 + 1 and yZ2/v 9 1. The parameter of the undisturbed density distribution 
that determines the growth rate is different from that a t  the small Reynolds numbers 
investigated in $6. In  particular there is here no qualitative difference between zero 
and non-zero values of the total excess mass in the central layer. For the illustrative 

approximate result a, 

case 
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the growth rate is y4 = (2n)-ia3Zg2A2. (7.15)  

The isolated central layer of non-uniform density is slightly less unstable than a 
sinusoidal density distribution inasmuch as the growth rate in the former case is 
smaller, by a factor of order (aZ$, than that in the latter case. 

With regard to the requirement of high Reynolds number of the disturbance flow, 
we see from (7.15) that this amounts to 

where R = gAZ3/v2 is the Rayleigh number (for Prandtl number unity) based on the 
layer thickness. The physical conditions required for satisfaction of this inequality 
are not extreme ; it would be satisfied, for example, in the case of a layer of thickness 
1 cm in water with a density variation given by A = 0.01 and a wavenumber 
aZ = 0.1. The value of the analysis for an inviscid fluid without diffusion lies also 
in its simple demonstration of the mechanism of the instability. 
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